Тк это прямоугольный треугольник, а катет вс равен половине гипотенузы дв, угол д равен 30 градусам( угол лежащий против катета, равному половине гипотенузы, равен 30 градусам). Рассмотрим треугольник дкс. Угол д= 30 градусам, угол дкс- 90градусам, тк ск высота. Найдем угол дск. Он будет равен: 180-(30+90)= 60градусам. Угол с прямой, тогда если угол дск 60 градусов, то угол вск-30. Рассмотрим треугольник вск. Угол вкс- прямой, угол ксв=30 градусам. Найдем угол в. Он будет равен : 180-(30+90)= 60 градусам. Если нужна проверка, то сумма двух острых углов в прямоугольном треугольнике равна 90 градусам. Все сходится:) ответ: 60,30,90 градусов
Основания трапеции делятся точкой касания на два отрезка, один из которых равен радиусу, т.е. 3. Обозначим эти отрезки как а и b, где а принадлежит большему основанию. Тогда a-b=8. По свойству прямоугольной трапеции, в которою вписана окружность, произведение отрезков, на которые делит точка касания, боковую сторону равно радиусу в квадрате. Т.к. эти отрезки равны а и b, по свойствам касательных, проведенных к окружности из одной точки, мы можем записать a*b=9. Имеем систему уравнений. {a-b=8 a*b=9 Находим a и b. а=9, b=1. Далее находим основания: 3+9=12, 3+1=4, и боковые стороны 3+3=6, 9+1=10. Суммируем и получаем периметр.
Номер 1
Дано. DE||АС ;АВ=21;AD=7 см
Доказать. т-к АВС~т-ку DBE
Решение
Треугольники АВС и DBE подобны по первому признаку подобия
<В-общий,<А=<D,как соответственные углы при пересечении параллельных прямых DE и AD и секущей АВ
Так как коэффициент подобия равен отношению сходственных сторон,то
k=AB:DB
DB=AB-AD=21-7=14
k=21:14=3/2
Номер 56
Дано: <PQC=<A;BC=18 cм;СР=6 см;СQ=4 cм
АС-??
ТреугольникиCPQ и CBA подобны по первому признаку подобия
<С-общий;<CQP=<PAB,по условию
Стороны CP и ВС ,CQ и AC сходственные стороны подобных треугольников,поэтому коэффициент подобия равен
k=CP:BC=6:18=1/3
k=CQ:AC
AC=4:1/3=12 см
Номер 3
Дано: <В=<D;AF:CF=3/2;BF=15 cм
DF-??
Треугольники АВF и СDF подобны по первому признаку подобия треугольников
<В=<D поусловию
<АFB=<DFC,как вертикальные
АF и FC- сходственные стороны подобных треугольников поэтому коэффициент подобия равен
k=AF:CF=3/2
BF и DF тоже сходственные стороны,поэтому
ВF:DF=3/2
DF=BF:3/2=10 cм
Номер 4
Дано:трапеция;ВО=3,2 см;OD=6,4 см;
ВС=4,8 см
АD-??
Треугольники АОD и СОВ подобные по первому признаку подобия треугольников
<1=<4,как накрест лежащие
<2=<3,как накрест лежащие
при пересечении параллельных прямых ВС и АD секущими ПС и ВD
ОD и ОВ сходственные стороны подобных треугольников,поэтому
k=OD:OB=6,4:3,2=2
AD и ВС тоже сходственные стороны
АD:BC=2
АD=BC•2=4,8•2=9,6
Объяснение: