М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Nina2111
Nina2111
09.06.2023 22:08 •  Геометрия

Мне нужно сдать ! дана правильная четырехугольная усеченная пирамида,стороны оснований которой 24 см и 20 см.угол наклона боковой грани к основанию равен 30 градусов.найти обьем усеченной пирамиды

👇
Ответ:
yakovenko040320
yakovenko040320
09.06.2023

Есть пирамида АВСДА1В1С1Д1, где АВСД - нижнее основание, О - центр нижнего основания, т.Л - середина стороны СД. Аналогично назовем Л1 и О1 для верхнего основания А1В1С1Д1. Восстановим вершину усеченной пирамиды и назовем ее т.К.

Рассмотрим прямоугольный треугольник КЛО: т.к. КО - катет, лежащий против угла КЛО=30 градусов, то КЛ=2*КО. ОЛ=АД/2=24/2=12. Примем КО за х. Тогда КО^2+ОЛ^2=КЛ^2;  х^2+12^2=(2х)^2; х=КО=4*корень из 3; КЛ=8*корень из 3.

Из подобия треугольников КЛО и КЛ1О1:

ОЛ/О1Л1=КО/КО1, отсюда КО1=О1Л1*КО/ОЛ=(20/2)*(4*корень из 3)/12=10/корень из 3

 

V усеч. = V(КАВСД) - V(КА1В1С1Д1)=S(АВСД)*КО/3- S(А1В1С1Д1)*КО1/3=

=24*24*4*(корень из 3)/3-20*20*(10/корень из 3)/3=2912/(3*корень из 3)

 

 

 

 

 

 

 

 

4,4(60 оценок)
Открыть все ответы
Ответ:
LiraReeman
LiraReeman
09.06.2023
Дано:
НABCD  - пирамида
ABCD - прямоугольник
AB=CD=10см
AD=ВС=18см
НO - высота
НO=12cм
S(бок)-?
S(полн)-?

Решение:
S(бок)=S(AНB)+S(BНC)+S(CНD)+S(AНD). Так как треугольники AНB и CНD, а также BНC и AНD попарно равны, то S(бок)=2S(BНC)+2S(CНD).
S(BHC)= \frac{1}{2} \cdot BC \cdot HK, где НК - высота, проведенная к стороне ВС. НК можно найти как гипотенузу прямоугольного треугольника НОК, где ОК - половина стороны СD.
HK= \sqrt{HO^2+OK^2} =\sqrt{12^2+( \frac{10}{2} )^2} =13(sm).
Аналогично, S(CHD)= \frac{1}{2} \cdot CD \cdot HN, где НN - высота, проведенная к стороне СD.
HN= \sqrt{HO^2+ON^2} =\sqrt{12^2+( \frac{18}{2} )^2} =15(sm)
Получаем:
S_{bok}=2S(BHC)+2S(CHD)=2\cdot \frac{1}{2} \cdot BC \cdot HK+2\cdot \frac{1}{2} \cdot CD \cdot HN=
\\\
=BC \cdot HK+CD \cdot HN=18\cdot 13+10\cdot 15=384(sm^2)
Площадь полной поверхности равна сумме площади боковой поверхности и площади основания:
S_{poln}=S_{bok}+S_{osn}=S_{bok}+AD\cdot DC=384+18\cdot10=564(sm^2)
ответ: 384см²; 564см²
Основанием пирамиды является прямоугольник со сторонами 18 см и 10 см.основанием высоты пирамиды,рав
4,6(29 оценок)
Ответ:
PonyLove11
PonyLove11
09.06.2023
Дано:
НABCD  - пирамида
ABCD - прямоугольник
AB=CD=10см
AD=ВС=18см
НO - высота
НO=12cм
S(бок)-?
S(полн)-?

Решение:
S(бок)=S(AНB)+S(BНC)+S(CНD)+S(AНD). Так как треугольники AНB и CНD, а также BНC и AНD попарно равны, то S(бок)=2S(BНC)+2S(CНD).
S(BHC)= \frac{1}{2} \cdot BC \cdot HK, где НК - высота, проведенная к стороне ВС. НК можно найти как гипотенузу прямоугольного треугольника НОК, где ОК - половина стороны СD.
HK= \sqrt{HO^2+OK^2} =\sqrt{12^2+( \frac{10}{2} )^2} =13(sm).
Аналогично, S(CHD)= \frac{1}{2} \cdot CD \cdot HN, где НN - высота, проведенная к стороне СD.
HN= \sqrt{HO^2+ON^2} =\sqrt{12^2+( \frac{18}{2} )^2} =15(sm)
Получаем:
S_{bok}=2S(BHC)+2S(CHD)=2\cdot \frac{1}{2} \cdot BC \cdot HK+2\cdot \frac{1}{2} \cdot CD \cdot HN=
\\\
=BC \cdot HK+CD \cdot HN=18\cdot 13+10\cdot 15=384(sm^2)
Площадь полной поверхности равна сумме площади боковой поверхности и площади основания:
S_{poln}=S_{bok}+S_{osn}=S_{bok}+AD\cdot DC=384+18\cdot10=564(sm^2)
ответ: 384см²; 564см²
Основанием пирамиды является прямоугольник со сторонами 18 см и 10 см.основанием высоты пирамиды,рав
4,5(37 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ