а) От М до АD ровно столько , сколько от M до точки N - середины АD,
потому что MN перпендикулярно к AD.
KN =AB=12 MK=5
MN -гипотенуза тр-ка MNK, равна корню из квадратов катеров KN и MK,
то есть MN=13.
б) BM - гипотенуза BMK, ВК=АD / 2 =5 MK=5
BM= корень(50) = 5корень(2)
Площадь АМВ = ВМ* AB /2 = 5 корень(2) *12/2 = 30корень(2)
Проекция АМВ на плоскость есть тр-к АKB и у них одна длина AB
Площадь АKB / BK = Площадь АMB / MB
отсюда Площадь АKB = Площадь АMB / MB *ВK =30корень(2) / (5 корень(2)) * 5 = 30
Зметим, что треугольник AMB наклонен под 45 градосув к плоскости проекции,
поэтому о и больше в корень(2) раз.
Но можно было и просто посчитать Площадь АKB = AB*BK/2= 12*5/2= 30
в) чтобы определить расстояние надо найти наименьшее расстояние между прямыми.
Из любой точки одной прямой можно опустить перпендикуляр на вторую, и из любой точки второй - перпендикуляр на первую, однако только тогда, когда эти перпендикуляры совпадают, то есть
проведён единственный перпендикуляр, он и окажется наименьшим.
Такой перпендикуляр всегда существует, хоть он иногда имеет нулевую длину, если прямые пересекаются.
В нашей задаче к прямым ВМ и AD, которые сами не параллельны, сушествует обший перпендикуляр AB, он будет и единственным "двойным" перпендикуляром, и самым коротким поэтому, и равен 12. это и будет расстоянием между ВМ и AD.
a) K, L, M ∈ α; α║(SBC)
KL║BS; KM║BC; ML║CS как линии пересечения двух параллельных плоскостей с одной общей.
SH⊥(ABC); AT⊥BC; H∈AT как центр правильного треугольника лежащий на медиане. AH:HT=2:1 по свойству пересечения медиан.
LU⊥KM ⇒ KU=UM ⇒ U∈AT ⇒ LU⊂(AST) ⇒ LU∩SH
Рассмотрим плоскость AST.
LU║ST как линии пересечения двух параллельных плоскостей с (AST).
AK:KB=AL:LS=5:1 по теореме о пропорциональных отрезках.
AU:UT=AL:LS по теореме о пропорциональных отрезках.
Как уже известно AH:HT=2:1. Пусть AU=5x; UT=x ⇒AT=6x ⇒ AH=4x; HT=2x ⇒ HU=2x-x=x.
ΔSHT~ΔRHU по 3 углам (1 общий остальные равны как соответственных угла при параллельных прямых).
Значит SH:RH=HT:HU=2:1. Пусть SH=2y; RH=y ⇒ SR=2y-y=y ⇒ SR=y=RH
То есть плоскость делит высоту пополам.
б) AT=AB*sin 60°=(15+3)*√3/2=9√3.
ΔAST~ΔALU по 3 углам (1 общий остальные равны как соответственных угла при параллельных прямых).
Значит AL:AS=LU:ST=6:5.
HT=1/3 *9√3=3√3 т.к. AH:HT=2:1
SH=13 ⇒ ST=√(169+27)=14 ⇒ LU=5/6 *14=35/3.
ΔAKM~ΔABC по 3 углам (1 общий остальные равны как соответственных угла при параллельных прямых).
Значит KM:BC=AK:AB=5:6 ⇒ KM=5/6 *18=15.
Как было указано в начале LU⊥KM ⇒ S=1/2* 15*35/3=175/2=87,5
ответ: 87,5.