М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
samruk1974
samruk1974
17.09.2020 04:06 •  Геометрия

Основа рівеобедреного трикутника співпадає з основою другого рівеобедреного трикутника і кутом 120 при вершині. основа перпендикуляра проведеного з вершин першого трикутника до площини другого є вершина другого трикутника. бічна сторона першого трикутника дорівнює 2 \sqrt{39}
см кут між площинами 30 знайти бічну сторону другого трикутника​

👇
Открыть все ответы
Ответ:
пмнирче
пмнирче
17.09.2020
Рис. прилагается
(ABCD) | | OO₁ ; ∠AOB =120° ; OO₁ =10 см ; OH ⊥AB ; OH =2 см .
-------
S_(ABCD) -?

ABCD - прямоугольник 
S_(ABCD)  =AB*AD = AB* OO₁=10AB . Определим  хорду AB .
∆OAB  равнобедренный (OA = OB  =r) ,   высота OH одновременно и медиана  AH =BH =AB /2  и  биссектриса * * * ∠AOH =(1/2)∠AOB =60°.* * *
∠ BAO=  ∠ABO = (180° - ∠AOB ) /2 =90°- (1/2)∠AOB =90° -60° = 30° . 
OH =OA/2 (катет против угла 30°) ⇒ OA =2*OH =2*2 см  = 4 см   и   
AB = 2* AH = 2* √ (OA² -OH²) =2√ (4² -2²) =4√3 (см) .
* * *  можно было  сразу  AB  =2* AH = 2*OH*tq60°  * * *
S_(ABCD)  =10*4√3  = 40√3  (см ²) .

ответ :  40√3 см ² .

Вцилиндре проведена параллельно оси плоскость, которая отсекает от окружности основания хорду, котор
4,6(36 оценок)
Ответ:
chiminswife
chiminswife
17.09.2020

1) 

Радиус вписанной окружности правильного многоугольника совпадает с его апофемой (т.е. перпендикуляром, опущенным из центра на любую сторону) 

Правильный шестиугольник можно разделить на 6 правильных треугольников. Его площадь равна площади 6 таких треугольников и  S(шестиугольника)=6•S (треуг) 

Нам известен радиус вписанной в шестиугольник окружности, т.е. высота правильного треугольника АОВ (см. рисунок). Для нахождения площади правильного треугольника воспользуемся формулой 

S= \frac{h^2}{ \sqrt{3} }

Тогда S _{6} = \frac{6* 3^{2} }{ \sqrt{3} }18 \sqrt{3} дм²

––––––––––

2)

По условию 2 \pi r_{1}-2 \pi r _{2} =2 \pi R

Примем коэффициент отношения радиусов окружностей равным а. Тогда радиус первой равен 5а, второй –3а

5a-3a=40⇒

a=20 см

r1=100 см=1м

S1=π•1²=π м²

60 см=0,6 м 

S2=π•(0,6)²=0,36 м²

–––––––––––

3)

 Найдите площадь сегмента круга, радиуса 4 см, если его хорда равна 4√2 см

Пусть центр круга О, хорда - АВ. 

АО=ВО ⇒∆ АОВ - равнобедренный

По т.косинусов АВ²=АО²+ВО²- 2АО•ВО•cos∠AOB

32=2•16-2•16•cosAOB⇒

cos AOB=0, ⇒ ∠АОВ=90°. 

Площадь искомого сегмента равна разности площадей сектора с углом 90° и прямоугольного ∆ АОВ. 

Градусная мера полного круга 360°, значит, площадь сектора с углом 90°=1/4 площади круга 

S сектора=16π:4=4π

S ∆ АОВ=4•4:2=4•2

S сегм=4π-4•2=4(π-2)= ≈4,566 см²

4)

Отношения отрезков сторон треугольника АВС, на которые их делят данные точки,  одинаковы.

 Примем коэффициент отношения отрезков сторон равным а. 

Тогда АВ=7а. 

Треугольники у вершин подобны треугольнику АВС, т.к. имеют общую вершину и  стороны исходного треугольника пропорциональны сторонам треугольников, «отсекаемых» от него у вершин, с коэффициентом подобия 7:2, Поэтому эти отсекаемые треугольники равновелики. 

 Отношение площадей подобных треугольников равно квадрату коэффициента подобия. 

k=АВ:ВК=7:2 ⇒

S (ABC):S(BKM)=k²= 49/4

 245:S(BKM)=49:4⇒

S(Δ BKM)=20

S(ТКМОНР)=245-3•20=185 мм²


Надо 1. найдите площадь правильного шестиугольника, описанного около окружности, радиус которой раве
4,5(33 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ