russian.
тригонометрические функции острого угла в прямоугольном треугольнике. sin, cos, tg, ctg
итак, у каждого прямоугольного треугольника есть два острых угла. для каждого из них можно найти синус, косинус, тангенс и котангенс. здесь главное не перепутать, что к чему относится.
синус острого угла пр. треугольника - это отношение (деление) противолежащего этому углу катета к гипотенузе.
косинус острого угла пр. треугольника - это отношение (деление) прилегающего к этому углу катета к гипотенузе.
тангенс острого угла пр. треугольника - это отношение противолежащего этому углу катета к прилегающему катету.
котангенс - это наоборот, отношение прилегающего к этому углу катета к противолежащему.
во вложении есть рисунок, там все показано. легче это понять словами, а не на рисунке (лично для меня).
также существует таблица значений синуса, косинуса, тангенса и котангенса для некоторых углов (30°, 45°, 60°, 90°), тоже во вложении. таблицу нужно выучить обязательно.
ukrainian.
тригонометричні функції гострого кута прямокутного трикутника. sin, cos, tg, ctg.
у кожному прямокутному трикутнику є два гострих кута. для кожного з них можна знайти синус, косинус, тангенс та котангенс.
синус гострого кута пр. трикутника - це відношення (ділення) протилежного цьому куту катета до гіпотенузи.
косинус гострого кута пр. трикутника - це, відношення прилеглого цьому куту катета до гіпотенузи.
тангенс гострого кута пр. трикутника - це відношення протилежного цьому куту катета до прилеглого.
котангенс - це, навпаки, відношення прилеглого до цього кута катета до протилежного.
також існує таблиця значень синуса(sin), косинуса (cos), тангенса(tg) та котангенса (ctg) для деяких кутів (30°, 45°, 60°, 90°). таблицю потрібно вивчити.
таблицу можно легко выучить по принципу, данному на сайте
2. СМ = 1/2 АВ (в соответствии с теоремой меридиана = 1/2 гипотенузы)
1/2 АВ = АМ=МВ (т.к. СМ - меридиана и делит гипотенузу пополам)
отсюда СМ = МВ
сответственно - СМВ это равнобедренный треугольник и у него углы у основания равны
поэтому угол МСВ = углу МВС
3. угол В (он же угол МВС=углу МСВ) можно выразить в треугольник АВС как 180 - (90- угол А) = 90 - угол А
в треугольнике АСН угол АСН можно выразить в треугольнике АСН как 180 - (90 - угол А) = 90 - угол А
следовательно угол АСН = углу МСВ
4. угол АСL (АСН + НСL) = углу LСВ (LСМ + МСВ)
при равенстве угол АСН = углу МСВ получается равенство, изначально стоящее в задаче в качестве доказывания HCL = LCM