Дан треугольник авс.сторона ав = корень из 7. ас= 2корня из 3. вс = 1. вне треугольника авс отмечена точка к. сторона кс пересекает сторону ав. треугольник акс подобен треугольнику авс, и угол кас больше 90 градусов. найти косинус угла акс.
По условию задачи треугольники подобны, в подобных треугольниках углы равны.
Дано, что угол КАС - тупой, в треугольнике АВС тупым будет угол, который лежит против большей стороны - 2√3 - это угол ABC=углу КАС, а угол АКС=углу АСВ.
Косинус угла АСВ найдем по теореме косинусов: с²=а²+b²-2ab*cosα
cos ACB = cos AKC = [1²+(2√3)²-√7²]/2*1*2√3 = 6/(4√3)= (√3)/2
ABC - равносторонний треугольник. - его проекция на плоскость P. . Отложим на перпендикулярах отрезки дм. Тогда BM = 15-10 = 5 дм, CM = 17-10 = 10 дм. Точка О - центр ABC, т.е. точка пересечения его медиан. Медиана правильного треугольника ABC делится точкой O в соотношении AO:OD = 2:1, откуда AO:AD = 2:3 Опустим из точки D перпендикуляр на плоскость в точку . Этот перпендикуляр разделит отрезок NM пополам. Значит медиана треугольника . Отрезок - средняя линия трапеции BCNM. Его длина дм. Треугольники подобны по первому признаку: - общий, . Тогда
. Так как АВ||СD, то угол ABD равен углу BDC, Треугольники ABD и BDC равнобедренные, так как их боковые стороны AB, BD и BC - радиусы окружности и равны 5. Диагональ АС может быть найдена из треугольник ABC (он тоже равнобедренный, АС - его основание), Надем АС из свойства синуса угла В при вершине данного треугольника. Угол B=β+γ, из тругольника BDC γ=180−2β. Тогда угол B=β+180−2β=180−β. Из равнобедренного треугольника ABC имеем AC=2∗AB∗sin(180−β2)=10∗sin(90−β/2)=10∗cos(β/2). cos(β/2) найдем из равнобедренного треугольника ABD: cos(β/2)=h/AB, где h - высота данного треугольника (обозначена синей линией на рисунке). h=52−32−−−−−−√=4, тогда cos(β/2)=4.5, следовательно, AC=10∗45=8. ответ 8.
По условию задачи треугольники подобны, в подобных треугольниках углы равны.
Дано, что угол КАС - тупой, в треугольнике АВС тупым будет угол, который лежит против большей стороны - 2√3 - это угол ABC=углу КАС, а угол АКС=углу АСВ.
Косинус угла АСВ найдем по теореме косинусов: с²=а²+b²-2ab*cosα
cos ACB = cos AKC = [1²+(2√3)²-√7²]/2*1*2√3 = 6/(4√3)= (√3)/2