TMNK- равнобедренная трапеция вписана окружность. Площадь трапеции 125. Хорда, параллельная основаниям , проведена в точки касания боковых сторон и равна 8. Найдите площадь круга.
Объяснение:
S(круга)= π R². R-?
1) Пусть О-центр вписанной окружности, ОА=ОР=ОY=R.
S (трапеции) =1/2*h*(a+b) , h=2R , (a+b)/2- длина средней линии.
2) Проведем среднюю линию НС. Она будет параллельна АВ, и пройдет через центр О (по свойству противоположных сторон описанного четырехугольника)
3) Т.к АВ параллельна основаниям , то ∠АХО=90° , тк радиус проведенный в точку касания перпендикулярен касательной.
ΔАХО-прямоугольный , cos∠ОАХ=АХ/АО , cos∠ОАХ=4/R
4) ∠ОАХ=∠АОН , тк АХ|| НО , АО-секущая.
ΔАОН-прямоугольный, cos∠ОАН=АО/НО, 4/R= R/НО ,4HO=R², 2(2HO)=R², HC=R²/2,
5) S (трапеции) =1/2 *(a+b) *h или 125= R²/2*2R , 125=R ³, R=5
S(круга)= 25π ед².
что я вам скажу - этими заданиями, в которых есть шаблоны для ответов, куда надо что-то как-то вставить, убивают возможность думать.
Решение простое.
У треугольника есть правило - против большей стороны лежит больший угол, и против меньшей стороны лежит меньший угол.
А теперь собственно решение.
АВ - это меньшая сторона из двух (третью мы вообще не берем в учет), значит против нее лежит меньший угол из двух. А если он тупой, то другой будет еще больше, значит, тоже тупой. Но у треугольника два тупых угла быть не может.
Значит, ответ такой - не может.
24 см.
Объяснение:
Основание треугольника 4 см, боковые стороны по 10 см.
Р=4+10+10=24 см
Примечение: при основании 10 см и боковых сторонах по 4 см треугольник не может существовать.