Дано:
АВ = 27 м - высота башни (А - вершина башни, В - основание башни)
∠АКВ = 60°
Найти:
а) расстояние КВ от точки К до основания башни В
б) расстояние КА от точки К до вершины башни А
Треугольник АВК - прямоугольный с гипотенузой КА и катетом КВ, прилегающим к углу АКВ = 60° и известным катетом АВ=27 м, противолежащим углу АКВ.
а) Катет КВ = АВ · ctg ∠АКВ = 27 · ctg 60° = 27 · 1/√3 ≈ 15,6 (м)
б) Гипотенуза КА = АВ : sin ∠АКВ = 27 : sin 60° = 27 : 0.5√3 ≈ 31,2 (м)
а) Расстояние от точки К до основания башни В: КВ ≈ 15,6 м
б) Расстояние от точки К до вершины башни А: КА ≈ 31,2 м
Угло при нижнем основании равнобедренной трапеции меньше 90°, а при верхнем больше 90°, поэтому ∠A = 60° - угол основания.
Нам неизвестно какая сторона боковая, известно только то, что они смежные. Поэтому решим два варианта.
1. AB - нижнее основание.
H₁, H₂ ∈ AB; DH₁ , CH₂ ⊥AB ⇒ DH₁ ║ CH₂
ΔADH₁ = ΔCBH₂ - по гипотенузе и острому углу т.к. трапеция равнобедренная.
AH₁ = H₂B - как соответственные стороны равных Δ.
∠H₂CB = 90° - ∠CBH₂ = 90° - 60° = 30° - как острые улг. в прямоугольном Δ.
H₂B = BC/2 = 20/2=10 - как катет лежащей напротив угла в 30° в прямоугольном Δ.
H₁H₂ = 32 - 10*2 = 12 = т.к. DH₁ ║ CH₂ и DH₁ = CH₂ - как соответственные стороны равных Δ.
P - периметр.
P = AB+ 2BC + CD = 32 + 40 + 12 = 84.
ответ: 84.
2. AB - боковая сторона.
H₁, H₂ ∈ AD; BH₁ , CH₂ ⊥AD ⇒ BH₁ ║ CH₂ ⇒ BH₁ = CH₂ - как параллельные отрезки заключённые между параллельными прямыми, поэтому BCH₂H₁ - прямоугольник ⇒ H₁H₂ = BC = 20.
ΔABH₁ = ΔCDH₂ - по гипотенузе и острому углу т.к. трапеция равнобедренная.
AH₁ = H₂D - как соответственные стороны равных Δ.
∠ABH₁ = 90° - ∠BAH₁ = 90° - 60° = 30° - как острые улг. в прямоугольном Δ.
AH₁ = AB/2 = 32/2=16 - как катет лежащей напротив угла в 30° в прямоугольном Δ.
BC = AD т.к. BH₁ ║ CH₂ и BH₁ = CH₂ - как соответственные стороны равных Δ.
AD = 20 + 16·2 = 52
P - периметр.
P = 2AB + BC + DA = 64 + 20 + 52 = .
ответ: 136.
Внизу.
Объяснение:
Один из углов будет 90, т.к. треугольник прямоугольный, второй угол = 83.
180-(90+83) = 180-173 = 7