1) Радиус окружности, описанной около правильного шестиугольника, равен стороне этого шестиугольника. Тогда длина дуги окружности, стягиваемой стороной данного шестиугольника равна L=2πR/6 = 2π9/6=3π. ответ: L=3π. 2) Центр вписанной и описанной окружности правильного треугольника лежит в одной точке - центре треугольника. Эта точка делит высоту правильного треугольника в отношении 2:1, считая от вершины. причем 2/3 этой высоты - радиус описанной окружности, а 1/3 - радиус вписанной окружности.. Итак, R=2*7=14, а L=2πR или L=28π ответ: L=28π. 3) Диагонали правильного шестиугольника, пересекаясь в точке О, делят его на 6 равносторонних треугольника. Рассмотрим треугольник АОВ и ромб АВОG. <BOC=60°, а <GBO=30°. Следовательно, <GBC=90°. Точно так же <BCF=90°. ВС=GF, как стороны правильного шестиугольника. CF=BG, как стороны равных треугольников ВОG и CDF. Итак, ВСFG - прямоугольник, так как противоположные стороны попарно равны, а прилежащие к одной стороне углы равны 90°. Что и требовалось доказать. Если сторона шестиугольника равна "а", то ВС=FG=а, BG=CF= a√3 (по Пифагору из треугольника ВОG).
Проведем диагональ трапеции и рассмотрим образовавшиеся треугольники. Пара противоположных сторон ромба являются средними линиями этих треугольников, каждая из них параллельна этой диагонали и равна ее половине. Отсюда эта пара - равные и параллельные стороны, т.е. четырехугольник - параллелограмм. Аналогично другая пара противоположных сторон равны. А т.к.к трапеция равнобедренная, то ее диагонали равны. Значит все стороны четырехугольника равны. Таким образом, четырехугольник - параллелограмм с равными сторонами, т.е. ромб.
если осевое сечение = квадрат то сторона такого квадрата = 2 радиуса то есть 6 см, а площадь = 6*6 = 36см :)