16/(2√3-1) см
Объяснение:
1) Медіана поділяє основу на два рівних відрізки МС=МВ=х
2) Медіана в рівнобедреному трикутнику, опущена з вершини є також висотою та бісектрисою, тому медіана АМ утворює 2 рівних прямокутних ΔАМС та ΔАМВ з ∠САМ=∠ВАМ=120/2=60°.
Розглянемо прямокутний ΔАМС.
Згідно з умовами завдання, АМ=2х-8.
Складемо рівняння, використовуючи функцію котангенсу:
ctg∠CAM=AM/CM ⇒
ctg 60°=(2х-8)/х
х=(2х-8)/ctg 60°
х=2х·√3 - 8√3
(2√3-1)х=8√3
х=8√3/(2√3-1)
Тоді за формулою сінусів:
АС=СМ÷sin∠CAM=8√3/(2√3-1)÷√3·2=16/(2√3-1) см
Определение:Проекция точки на прямую - это или сама точка, если она лежит на прямой, или основание перпендикуляра, опущенного из этой точки на заданную прямую.
Так как А1 и В1 - проекции точек на прямую ребро двугранного угла, то АА1 и ВВ1 перпендикулярны ему.
Грани двугранного угла по условию взаимно перпендикулярны, следовательно, АА1 перпендикулярно плоскости, которой принадлежит т.В, и ВВ1 перпендикулярно плоскости, которой принадлежит т.А.
ВА1В1 прямоугольный.
ВА1=А1В1+ВВ1=36+49=85
Отрезок АА1 перпендикулярен плоскости, которой принадлежит т. В, он перпендикулярен любой прямой, проходящей через его основание А1 (свойство).
ВАА1 - прямоугольный
По т.Пифагора
АВ=АА1+ВА1=25+85=110
АВ=110