М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
SofyaA3
SofyaA3
06.10.2020 06:45 •  Геометрия

Площадь полной поверхности куба равна 24см².найдите его диагональ

👇
Ответ:
ufs09225
ufs09225
06.10.2020

Площадь полной поверхности куба равна

S=6a^2=3d^2

откуда диагональ куба равна

d=\sqrt{\frac{S}{3}}=\sqrt{\frac{24}{3}}=\sqrt{8}=2\sqrt{2}

ответ: 2\sqrt{2}см

4,8(41 оценок)
Открыть все ответы
Ответ:
пвмыиыо
пвмыиыо
06.10.2020

ответ:  S_{bok}=27\sqrt{19}

Объяснение:  РАВС - правильная треугольная пирамида, АВ=12 , РН=8,  А₁В₁С₁║АВС .

АСВ – правильный треугольник, Н – центр данного треугольника (центр вписанной и описанной окружностей). РМ – апофема заданной пирамиды. ММ₁ – апофема усеченной пирамиды. Согласно свойству параллельных плоскостей (две параллельные плоскости пересекают любую третью плоскость так, что линии пересечения параллельны), имеем несколько пар подобных треугольников с равным коэффициентом подобия. В частности

\frac{PH_1}{PH}=\frac{PM_1}{PM}=\frac{A_1B_1}{AB}=\frac{1}{2}\\\\A_1B_1=\frac{AB}{2}=\frac{12}{2}=6

Найдём НМ - радиус вписанной окружности в правильный треугольник:

HM=r=\frac{AB\sqrt3}{6}=\frac{12\sqrt3}{6}=2\sqrt3

Рассм. ΔРНМ:  PM=\sqrt{PH^2+HM^2}=\sqrt{8^2+(2\sqrt3)^2}=\sqrt{64+4\cdot 3}=\sqrt{76}=2\sqrt{19}

PM_1=\frac{1}{2}PM=\frac{1}{2}\cdot 2\sqrt{19}=\sqrt{19}\\\\MM_1=PM-PM_1=2\sqrt{19}-\sqrt{19}=\sqrt{19}\\\\S_{bok}=3\cdot \frac{AB+A_1B_1}{2}\cdot MM_1=3\cdot \frac{12+6}{2}\cdot \sqrt{19}=27\sqrt{19}


Решите у меня уже не осталось sos вопрос жизни и смерти
4,6(9 оценок)
Ответ:

ответ:  S_{bok}=27\sqrt{19}

Объяснение:  РАВС - правильная треугольная пирамида, АВ=12 , РН=8,  А₁В₁С₁║АВС .

АСВ – правильный треугольник, Н – центр данного треугольника (центр вписанной и описанной окружностей). РМ – апофема заданной пирамиды. ММ₁ – апофема усеченной пирамиды. Согласно свойству параллельных плоскостей (две параллельные плоскости пересекают любую третью плоскость так, что линии пересечения параллельны), имеем несколько пар подобных треугольников с равным коэффициентом подобия. В частности

\frac{PH_1}{PH}=\frac{PM_1}{PM}=\frac{A_1B_1}{AB}=\frac{1}{2}\\\\A_1B_1=\frac{AB}{2}=\frac{12}{2}=6

Найдём НМ - радиус вписанной окружности в правильный треугольник:

HM=r=\frac{AB\sqrt3}{6}=\frac{12\sqrt3}{6}=2\sqrt3

Рассм. ΔРНМ:  PM=\sqrt{PH^2+HM^2}=\sqrt{8^2+(2\sqrt3)^2}=\sqrt{64+4\cdot 3}=\sqrt{76}=2\sqrt{19}

PM_1=\frac{1}{2}PM=\frac{1}{2}\cdot 2\sqrt{19}=\sqrt{19}\\\\MM_1=PM-PM_1=2\sqrt{19}-\sqrt{19}=\sqrt{19}\\\\S_{bok}=3\cdot \frac{AB+A_1B_1}{2}\cdot MM_1=3\cdot \frac{12+6}{2}\cdot \sqrt{19}=27\sqrt{19}


Люди.вопрос жизни и смерти вообще не знаю,как решить
4,6(87 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ