Это будет очень длинная задачка. Для начала рассмотрим треугольник BDA. Мы можем заметить, что гипотенуза в два раза больше основания, следовательно угол А будет равен 30 градусам. угол АВD равен 90-30=60 градусов. Угол DВА равен 90-60=30 градусов. Возьмем ВС за х. Напротив угла в 30 градусов лежит катет в два раза меньше гипотенузы следовательно DC = 0,5 х. То же самое в треугольнике АВС, угол А = 30 градусам, а ВС=х. Значит, АС= 2х. 2х-0,5х=1,5х - AD. найдем соотношение AD к AC. 1.5/2 = 3/4. 4AD=3AC
1 Если известны величины двух углов произвольного треугольника (β и γ), то величину третьего (α) можно определить исходя из теоремы о сумме углов в треугольнике. Она гласит, что эта сумма в евклидовой геометрии всегда равна 180°. То есть для нахождения единственного неизвестного угла в вершинах треугольника отнимайте от 180° величины двух известных углов: α=180°-β-γ.2Если речь идет о прямоугольном треугольнике, то для нахождения величины неизвестного острого угла (α) достаточно знать величину другого острого угла (β). Так как в таком треугольнике угол, лежащий напротив гипотенузы, всегда равен 90°, то для нахождения величины неизвестного угла отнимайте от 90° величину известного угла: α=90°-β