Даны точки A (– 1; 3), B (1; 5), C (3; 3), D (1; 1).
Если не известно, какая фигура заданный четырёхугольник, то проще его разделить на 2 треугольника: АВС и АСД. Найти их площади и сложить.
Вектор a (АВ) Вектор b (АС)
x y x y
2 2 4 0
4 4 16 0 Квадраты
8 16 Сумма квадратов
Модуль =√8=2√2 ≈ 2,8284 4
Скалярное произведение ABxAC = (2*4 + 2*0) = 8.
cos ВAС = 0,707106781
Угол ВAС = 0,7854 радиан
45 градусов.
Вектор e (АD)
x y
2 -2
4 4
8
2,828427125
Скалярное произведение AСxAD = 8
cos CAD= 0,707106781
Угол CAD = 0,7854 радиан
45 градусов.
S(ABCD) = (1/2)*(AB*AC*sinA+AC*AD*sinCAD)
S(ABCD) = 0,5 *(8+8) = 8.
1. ∠BAC=18°; ∠CAB = 72°.
2. 2 см, 7 см.
3. АС=BD=24 см.
4. 25°, 25°, 130°.
5. 20°, 70°, 90°.
Объяснение:
1. ∠ACB=x. Тогда ∠BAC=4x.
Сумма углов треугольника равна 180°. Тук как угол В=90°, то
х+4х=90°;
5х=90°;
х=18° - угол BAC;
угол CAB =4x=4*18= 72°.
***
2. P=2(a+b) = 18 см, где а=х см, b=x+5 см .
2(х+х+5)=18;
2х+5=9;
2х=4;
х=2 см - меньшая сторона;
Большая сторона равна х+5=2+5=7 см.
Проверим:
Р=2(2+7)=2*9=18 см. Всё верно!
***
3) Треугольник АВО - равносторонний АВ=ВО=АО=12 см.
Диагонали в прямоугольнике делятся пополам. Следовательно АС=BD=2*AO=24 см .
***
4. В ромбе все стороны и противоположные углы равны. Следовательно треугольник АВС - равнобедренный с углом при вершине 130°.
Сумма углов в треугольнике равна 180°.
∠САВ+∠АВС+∠ВСА=180°;
∠ВАС=∠ВСА=(180°-130°)/2=25°.
***
5. Диагонали в ромбе пересекаются под углом 90° и углы при вершине делит пополам. Следовательно угол ∠АВО =∠АВС/2=140°/2=70°.
Сумма углов в треугольнике равна 180°:
∠АВО+∠ВОА+∠ОАВ=180°.
∠ВАО=180°-(70°+90°)=180°-160°=20°;