ответ:
дана прямая а и точка м, не лежащая на ней.
проводим дугу с центром в точке м (черная), произвольного радиуса, большего расстояния от точки м до прямой.
получили две точки пересечения дуги и прямой а. обозначим их а и в.
теперь построим две окружности (красных), с центрами в данных точках, произвольного одинакового радиуса (большего половины отрезка ав).
точки пересечения этих окружностей назовем к и н.
проводим прямую кн.
кн - искомый перпендикуляр к прямой а.
доказательство:
если точка равноудалена от концов отрезка, значит она лежит на серединном перпендикуляре к отрезку.
ак = кв как равные радиусы, значит к лежит на серединном перпендикуляре к отрезку ав.
ан = нв как равные радиусы, значит н лежит на серединном перпендикуляре к отрезку ав.
кн - серединный перпендикуляр к отрезку ав.
ма = мв как равные радиусы черной окружности, значит и точка м лежит на прямой кн, т.е. перпендикуляр к прямой а проходит через точку м.
значит m имеет координаты m = {-2;3}
n = { 3;5}
длины равны
m=√ -2^2+3^2=√13
n=√ 3^2+5^2 =√34
m-n по правилу параллелограмма равна
найдем угол
cosa= -2*3+5*3 = 9/ √13*34 =9/√442
теперь по теореме косинусов длину m-n
m-n=√ 13+34-2√442* 9/√442 = √ 13+34-18 = √29