Дан полукруг с диаметром ав. через середину полуокружности проведены две прямые, делящие полукруг на три равновеликие части. в каком отношении они делят диаметр ав?
Прямые симметричны относительно ОС, поскольку усеченные круговые сегменты (один из них - СЕВ, ограничен дугой СВ) равны по площади, и оба равны четверти круга с вырезанным прямоугольным треугольником (справа это ОСЕ), следовательно, прямоугольные треугольники равны по площади, один катет у них общий, => они равны. Это - очевидно, но надо было это отметить.
Осталось понять, что 2*Scoe = Sceb = Socb - Scoe; :)
Дан ромб АВСD. Точка О - точка пересечения его диагоналей. Точка Р - точка пересечения перпендикуляра ВН (высоты ромба) и большей диагонали АС. В ромбе диагонали взаимно перпендикулярны и точкой пересечения делятся пополам. Большая диагональ ромба равна сумме данных нам отрезков: 3,5+12,5=16см. Половина ее равна 8см. В прямоугольном треугольнике РВС (<PBC=90°, дано) ВО - высота из прямого угла и по свойствам этой высоты равна ВО=√(РО*ОС). ОС=8 (половина диагонали), РО=АО-АР=8-3,5=4,5. Тогда ВО=√(4,5*8)=√(9*4)=6см. ВО - это половина меньшей диагонали. Значит меньшая диагональ равна 12см. Сторона ромба АВ найдется из прямоугольного треугольника АОВ по Пифагору: АВ=√(АО²+ВО²)=√(64+36)=10см. ответ: сторона ромба равна 10см, его меньшая диагональ равна 12см.
Цитата: "Если боковые грани пирамиды наклонены к плоскости основания под одним углом, то в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр". Радиус вписанной в треугольник окружности находится по формуле: r=√[(p-a)(p-b)(p-c)/p, где a,b,c - стороны, а р - полупериметр треугольника. В нашем случае р=(20+21+29):2=35см. Тогда r=√[(15*14*6)/35]=6см. В прямоугольных треугольниках с катетами, равными r(радиус вписанной окружности) и h (высота пирамиды) острый угол равен 45°, значит катеты равны и h=r=6см. ответ: высота пирамиды равна 6см.
См. чертеж.
Прямые симметричны относительно ОС, поскольку усеченные круговые сегменты (один из них - СЕВ, ограничен дугой СВ) равны по площади, и оба равны четверти круга с вырезанным прямоугольным треугольником (справа это ОСЕ), следовательно, прямоугольные треугольники равны по площади, один катет у них общий, => они равны. Это - очевидно, но надо было это отметить.
Осталось понять, что 2*Scoe = Sceb = Socb - Scoe; :)
3*R*a/2 = pi*R^2/4;
ОЕ = а = pi*R/6; BE = R - a = R*(1 - pi/6);
Две прямые поделят диаметр на три отрезка
R*(1 - pi/6); pi*R/3; R*(1 - pi/6); ну, отсюда пропорция
(1 - pi/6) : (pi/3) : (1 - pi/6)