1) прямые МР и NK могут быть параллельны, т.к. углы PMN и RNM являются односторонними (в сумме дают 180градусов) и раз уж они равны, значит по 90 градусов каждый => МР II NK
так же они могут пересекаться (точка Р накладывается на точку К). И при условии, что МР=NK получаем равнобедненный треугольник с основанием МN. А углы при основании такого треугольника равны.
ответ: 5)Пересекаются или параллельны
2)
пусть один из односторонних углов х (тупой), другой y(острый), тогда:
х-y=65
x+y=180
y=180-х
х-(180-х)=65
2х=65+180=245
х=122,5градуса
y=180-122,5=57,5градусов
y - это один из острых накрест лежащих углов (накрест лежащие углы равны) =>
2y=57,5*2=115градусов
ответ: 1)115 градусов
1) прямые МР и NK могут быть параллельны, т.к. углы PMN и RNM являются односторонними (в сумме дают 180градусов) и раз уж они равны, значит по 90 градусов каждый => МР II NK
так же они могут пересекаться (точка Р накладывается на точку К). И при условии, что МР=NK получаем равнобедненный треугольник с основанием МN. А углы при основании такого треугольника равны.
ответ: 5)Пересекаются или параллельны
2)
пусть один из односторонних углов х (тупой), другой y(острый), тогда:
х-y=65
x+y=180
y=180-х
х-(180-х)=65
2х=65+180=245
х=122,5градуса
y=180-122,5=57,5градусов
y - это один из острых накрест лежащих углов (накрест лежащие углы равны) =>
2y=57,5*2=115градусов
См. чертеж.
ОС перпендикулярно АВ, ОМ = ОС/2, поэтому ОВСЕ - ромб. Причем у этого ромба меньшая диагональ равна радиусу.
Площадь треугольника ОВЕ Sobe = R^2*корень(3)/4;
Угол ВОЕ = 2*pi/3; Площадь кругового сектора ОВСЕ =S/3; S = pi*R^2; площадь сегмента ВСЕ между дугой ВСЕ и хордой ВЕ равна S/3 - Sobe; искомая площадь равна S/2 - (S/3 - Sobe) = S/6 + Sobe = pi*R^2/6 + R^2*корень(3)/4 =
= R^2*(pi/6 + корень(3)/4);