1 случай. Точка A лежит внутри окружности с центром в точке O или на окружности. Докажем, что середины хорд, проходящих через A, образуют окружность с диаметром AO. Если точка M лежит на этой окружности, то угол OMA прямой как вписанный и опирающийся на диаметр, а тогда M - середина хорды, проходящей через A и M. В обратную сторону так же просто.
2 случай. Точка A лежит вне окружности. Тогда середины хорд, проходящих через A, образуют часть окружности с диаметром AO, лежащей внутри нашей. Доказательство аналогично.
Первая задача: Так как плоскость задается точкой и прямой, а все три пересекающиеся между собой прямые пересекают четвертую, то и точки А, В и С принадлежат одной плоскости, в которой и лежат те три прямые. Вторая задача: Прямая ВС лежит в плоскости (АВС), так как 2 её точки В и С лежат в плоскости (АВС). Прямая АМ пересекает плоскость (АВС) в точке А, не лежащей на ВС, значит АМ и ВС скрещивающиеся прямые. Третья задача: PK средняя линия треугольника АВС, поэтому равна 1/2 ВС=8:2=4Доказательство. МН средняя линия треугольника DBC (по условию), значит МН || BC и с плоскостью МНК. не имеет общих точек, поэтому РК тоже не может иметь с ВС общих точек, но РК и ВС лежат в одной плоскости треугольника АВС, значит РК и ВС параллельны. Так, как к середина АС, то и Р должна быть серединой АВ.
Этого хватит, ты мало выставил, так бы все решил. Удачи!!
В треугольнике PST, угол P=45 градусов, а высота SO делит сторону на отрезки PO и OT. PO=5 см и TO=4 см. Найдите площадь треугольника PST.
22,5 см²
Объяснение:
Дано: ΔPST, ∠P=45°, SO - высота, PO=5 см, TO=4 см. Найти S(PST).
ΔPSO - прямоугольный, ∠PSO=90°-45°=45°, т.к. сумма острых углов прямоугольного треугольника составляет 90°;
РO=SO=5 см; PT=4+5=9 см
S(PST)=1/2 * PT * SO = 1/2 * 5 * 9 = 22,5 см²