Пусть АВС - равнобедренный треугольник и АВ=ВС. В равнобедренном треугольнике боковые стороны равны. Значит АВ=ВС=20 см (8+12). Биссектриса делит сторону на отрезки, пропорциональные прилежащим сторонам (свойство биссектрисы). Тогда АС/АВ=12/8, отсюда АС=20*12/8=30 см. Зная три стороны, по формулам радиуса вписанной окружности найдем этот радиус. 1. Радиус равен: r=√[(p-a)(p-b)(p-c)/p], где a,b,c - стороны треугольника, р - полупериметр. В нашем случае р=(20+20+30)/2=35см r=√(15*15*5/35) =15/√7 или 15√7/7 см. 2. Для равнобедренного треугольника r=(b/2)*√[(2a-b)/(2a+b)], где а - боковая сторона, b - основание. Тогда r=15√(10/70)=15/√7=15√7/7 см. ответ: r=15√7/7 см.
Точка S удалена от каждой из вершин правильного треугольника ABC на корень из 13 см. Найти двугранный угол SABC, если AB = 6 см Соединим S с вершинами треугольника АВС. SA=SB=SC=sqrt(13) Получим правильную пирамиду. Пусть SO - ее высота. Тогда так как боковые ребра равны, то О-центр вписанной окружности (точка пересечения высот, медиан..) Проведем СО до пересечения с АВ в точке М . М- середина АВ, СМ перпендикулярно АВ. Тогда и SМ перпендикулярна АВ по теореме о трех перпендикулярах, а значит угол SMO - линейный угол двугранного угла SABC (его надо найти) Медиана правильного треугольника со стороной а равна а*sqrt(3)/2, а медианы в точке пересечения делятся как 2:1, считая от вершины) можно найти ОМ=sqrt(3) SМ находится из треугольника ASM по т. Пифагора сosSMO=MO/SM
1) Поскольку внешний угол равен 120 град.,значит угол А=180-120=60 град.
2) Сумма всех углов треугольника 180 град.,вычислим оставшийся угол В:
180-(90+60)=30 град.
Напротив угла в 30 град лежит катет равный половине длины гипотенузы
пусть х- длина катета АС,
тогда 2х-длина гипотенузы АВ,следовательно:
3) х+2х=18
3х=18
х=6см длина катета АС
4) 2*6=12см -длина АВ
Объяснение: