1) Раз ВО разделила угол В пополам, то угол ОВС=1/2 углаВ=160/2=80о. Отношение 3:5 показывает, что угол В разделен на 8 частей и 3 части, т. е. 160/8*3=60о приходится на угол АВЕ, а 160/2*5=100о приходится на угол ЕВС. Отсюда угол ЕВО= разности между углами ЕВС и ОВС, т. е. 100о-80о=20о. Получается, что на чертеже луч ВЕ расположен правее луча ВО. 2) Обозначим высоту ВН. Р тр-ка АВН: АВ+АН+5=18; Р тр-ка НВ: ВС+НС+5=26. Сложим эти равенства: АВ+АН+ВС+НС+10=44; АВ+ВС+(АН+НС) =34; АВ+ВС+АС=34, а левая часть это и есть периметр тр-ка АВС. 3) Взят острый угол между высотами 20о. Значит смежный с ним будет 160о. Теперь мы можем определить угол при вершине: 360о-160о-2*90о=20о. (Сумма внутренних углов в выпуклом четырехугольнике равна 360о. ) Тогда на долю двух углов при основании приходится 180о-20о=160о, а на долю каждого по 80о, т. к. углы при основании в равнобедренном тр-ке равны.
Так как в параллелограмме противоположные углы всегда равны, то угол a= углу c, а угол b=углу d.
1) если а = 80, то и с=80. Сумма углов параллелограмма =360 градусов, значит углы b и d в сумме составляют 200 градусов, а по отдельности по 100, так как они равны. А=С=80 градусов Б=Д=100 градусов
2)так как односторонние углы (а,б / с,д) составляют в сумме 180 градусов, то угол а= 75 градусов, а угол б=105 (105+75=180/ 105-75=30) А=С=75 градусов Б=Д=105 градусов
3)так как углы а и с равны и в сумме дают 140, то по отдельности угол а и угол с = 140:2=по 70 градусов каждый А=С =70 Б=Д = 110
4)угол Б в два раза больше угла а, а в сумме они дают 180 градусов, следовательно, угол а=60, а угол Б =60*2=120 А=С=60 Б=Д =120
5) проведём диагональ от угла Б к углу Д, получился треугольник. Он прямоугольный, так как один из угол =90 градусов. Нам дано 2 угла 90 и 30 градусов, значит третий угол (А) равен 60 градусов (так как сумма углов треугольника равна 180 градусов) . Углы а и с=60, а углы Б и Д= 360-(60+60)= 240. По отдельности они равны 240:2=120. А=С=60 градусов Б=Д=120 градусов
2) Обозначим высоту ВН.
Р тр-ка АВН: АВ+АН+5=18;
Р тр-ка НВ: ВС+НС+5=26. Сложим эти равенства:
АВ+АН+ВС+НС+10=44; АВ+ВС+(АН+НС) =34; АВ+ВС+АС=34, а левая часть это и есть периметр тр-ка АВС.
3) Взят острый угол между высотами 20о. Значит смежный с ним будет 160о. Теперь мы можем определить угол при вершине: 360о-160о-2*90о=20о. (Сумма внутренних углов в выпуклом четырехугольнике равна 360о. ) Тогда на долю двух углов при основании приходится 180о-20о=160о, а на долю каждого по 80о, т. к. углы при основании в равнобедренном тр-ке равны.