Формула средней линии:m=(a+b)/2,СРЕДНЯЯ ЛИНИЯ НАМ ИЗВЕСТНАИ И РАВНА 5 см.
Составим уравнение обозначив за х=2, y=3:
(10-y)/y=2/3
30-3y=2y
5y=30
y=6⇒x=4
ответ:6см,4см.
такого треугольника не существует
или 60 см^2.
Объяснение:
Треугольника с заданными сторонами не существует.
13 см > 10см + 13мм, не выполнено неравенство для сторон треугольника.
Если в условии опечатка, длины стороны треугольника 13 см, 13 см, 10 см, то площадь может быть найдена по формуле Герона:
S = √p•(p-a)•(p-b)•(p-c).
p = (10+13+13):2 = 18 (см),
S = √18•(18-13)•(18-13)•(18-10) = √(18•5^2•8) = √(9•5^2•16) = 3•5•4 = 60 (см^2)
Ещё одним может быть нахождение по формуле
S = 1/2•a•h, где а = 10 см, а длина высоты найдена по теореме Пифагора из прямоугольного треугольника, образованного боковой стороной, высотой, проведённой к основанию, и половиной основания, h = 12 см.
(S = 1/2•10•12 = 60 (см^2) ).
Пусть х=2, y=3. Средняя линия равна полусумме оснований, следовательно:
(x+y)/2 = 5
x/y=2/3
x+y=10
x=10-y
(10-y)/y=2/3
30-3y=2y
5y=30
y=6
x=4