М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
гаагмгмг
гаагмгмг
23.10.2022 17:02 •  Геометрия

Трикутник ABC , c=90, гипотенуза 41 см , один з катетів 40см . Знайти периметр​

👇
Ответ:

По теореме Пифагора найдем второй катет:

{a}^{2} + {b}^{2} = c {}^{2} \\ b = \sqrt{ {41}^{2} - {40}^{2} } = \sqrt{1681 - 1600} = \\ = \sqrt{81} = 9 \\ \\ P = a + b + c = \\ = 41 + 40 + 9 = 50 + 40 = 90

ответ: 90 см

4,6(61 оценок)
Открыть все ответы
Ответ:
мир285
мир285
23.10.2022

Доказать подобие треугольников А1СВ1 и АВС.

сделаем построение по условию

треугольники ACA1 и ВСВ1 - подобные по ПЕРВОМУ признаку подобия (по двум углам)

<AA1C=<BB1C=90 град

<ACA1=<BCB1 -вертикальные

следовательно , соответственные стороны относятся

СA1 / CB1 =CA / CB = k1   -коэффициент подобия для треугольников ACA1 и ВСВ1

отношение можно записать по-другому

СA1 / CA = CB1 / CB = k2  -коэффициент подобия для треугольников А1СВ1 и АВС.

т.е. треугольники А1СВ1 и АВС подобны по ВТОРОМУ признаку подобия 

(если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы между этими сторонами равны)

пропорциональные стороны СA1 / CA = CB1 / CB

<A1CB1 = <ACB --вертикальные

доказано подобие треугольников А1СВ1 и АВС.


Дан треугольник авс с тупым углом с, проведены высоты аа1 и вв1. доказать подобие треугольников а1св
4,8(76 оценок)
Ответ:
коля564
коля564
23.10.2022

Доказать подобие треугольников А1СВ1 и АВС.

сделаем построение по условию

треугольники ACA1 и ВСВ1 - подобные по ПЕРВОМУ признаку подобия (по двум углам)

<AA1C=<BB1C=90 град

<ACA1=<BCB1 -вертикальные

следовательно , соответственные стороны относятся

СA1 / CB1 =CA / CB = k1   -коэффициент подобия для треугольников ACA1 и ВСВ1

отношение можно записать по-другому

СA1 / CA = CB1 / CB = k2  -коэффициент подобия для треугольников А1СВ1 и АВС.

т.е. треугольники А1СВ1 и АВС подобны по ВТОРОМУ признаку подобия 

(если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы между этими сторонами равны)

пропорциональные стороны СA1 / CA = CB1 / CB

<A1CB1 = <ACB --вертикальные

доказано подобие треугольников А1СВ1 и АВС.

 

 

 


Дан треугольник авс с тупым углом с, проведены высоты аа1 и вв1. доказать подобие треугольников а1св
4,8(74 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ