ГЕОМЕТРИЯ ! УМОЛЯЮ БЫСТРЕЕ! В ромбе острый угол равен 37°, а высота равна 18,6 см. Найдите сторону ромба. ответ дайте в сантиметрах и округлите его до сотых.
на СД отметим середину Е. МЕ//ВС//АД=10см соеденим МС и найдем ее длину МС гипатенуза прямоугольного треугольника ВСМ МС= √(10^2+5^2)= √125
радиус окружности с центром М что бы она касалась прямой СД будет равна МЕ. МЕ=10см
что бы не имела с прямой СД общих точек то радиус круга меньше МЕ и больше МС. от этого получаем пусть радиус круга будет (х) х> 0, х <МЕ то есть х <10 и х>МС то есть х> √125 ответ изобразим так (0; 10)&(125;+○○) что бы имел с СД две общие точки радиус круга так же (х) будет х> МЕ и х <МС то есть 10 <х < √125 (10; √125)
Обозначим :
Н - высота пирамиды
h - высота основания пирамиды
r -радиус окружности, вписанной в основание
а - сторона основания
Решение
а) высота пирамиды Н = L· sinβ
б) проекция апофемы на плоскость основания -это радиус вписанной окружности r = L · cosβ.
в) сторона основания пирамиды а = 2r/tg 30° = 2L· cosβ/(1/√3) =
= 2√3 · L·cosβ
г) площадь основания пирамиды Sосн = 0.5h·a, где h = a·cos30°.
Тогда Sосн = 0.25a²·√3 = 0.25 · √3 · (2√3 · L·cosβ)² = 3√3L² · cos²β
д) Площадь боковой поверхности пирамиды
Sбок = 3 · 0,5 · L · a = 1.5L · 2√3 · L·cosβ = 3√3 · L² · cosβ
e) площадь полной поверхности пирамиды:
Sполн = Sосн + Sбок = 3√3 · L² · cos²β + 3√3 · L² · cosβ =
= 3√3 · L² · cosβ · (cosβ + 1)
Подробнее - на -