Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.
192. Диагонали параллелограмма пересекаются и точкой пересечения О делятся пополам. Треугольники АВС и АДС равновеликие (равны по площади); треугольники АОД и СОД тоже равновеликие; треугольники АОК и КОД тоже равновеликие. Следовательно, если SАДС=1/2отSАВСД, то SАОД=SСОД=1/4отSАВСД. А SКОД=1/8отSАВСД. В сумме SСОД и SКОД=3/8отSАВСД. То есть отношение 3:8.
193. Большая сторона - гипотенуза (5х). Катеты соответственно равны 4х и 3х. Треугольники, образованные высотой, прямоугольные. Все три подобны между собой. Составим пропорцию на основе подобия треугольников: ; ; . Если х=10, то гипотенуза =10*5=50, катеты: 10*4=40, 10*3=30. Периметр P=50+40+30=120.