Проекции катетов на гипотенузу прямоугольного треугольника - это отрезки, на которые высота из прямого угла делит гипотенузу. Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой. Отсюда h² =12*3=36 h=6 По теореме Пифагора из треугольников, на которые высота разделила исходный треугольник, найти катеты сложности не представляет. Меньший катет равен 3√5, больший - 6√5 Проверка: Квадрат гипотенузы равен (3√5)²+ (6√5)²=225 Гипотенуза равна √225=15, что соответствует условию задачи.
Сторона правильного треугольника — 10 см, углы по 60 градусов. Радиусом треугольника будет 2/3 от высоты этого треугольника (т. к в равностороннем треугольнике медианы/высоты/бессиктрисы совпадают, то точками пересечения они делятся в соотношении 2/1, считая от вершины) . Таким образом: R=2/3*a*sin(п/3). То есть 2/3*10*(корень из трёх пополам) или 10/корень из 3. Далее находим площадь круга: S=п*(R в квадрате) , потом делим площадь на 360 и умножаем на угол сектора (если в градусах) , а если сектор в радианах, то делим на 2п и так же умножаем
Рассмотрим треугольник АНС - прямоугольный, тк СН - высота
AM = MC = MH = 10 и следовательно AC = 20.