Нарисуем треугольник. Обозначим его вершины А,В,С.
Из вершины В проведем к АС медиану, продолжим ее на ее же длину. Поставим точку В1.
Соеденим В1 с вершинами треугольника А и С.
Точка М - середина АС и ВМ, а АС и ВМ в то же время диагонали четырехугольника АВСВ1.
Если диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то этот четырехугольник - параллелограмм.
Следовательно, АВ=СВ1 и ВС=АВ1.
Треугольники АВВ1 и ВСВ1 равны как половины параллелограмма.
ВС=АВ1
АВ+АВ1=АВ+ВС
ВВ1 -удвоенная медиана треугольника АВС = как третья сторона этих треугольников не может быть равна, и тем более больше, суммы сторон треугольника АВС.
Сумма двух сторон треугольника больше удвоенной медианы, проведеной из той же вершины, что и требовалось доказать.
Если высота, опущенная на сторону СД делит её пополам, значит она является его медианой, а это означает, что ΔДВС- равнобедренный, ВС=ВД Поскольку в равнобедренном ΔДВС высота является медианой, то она является также и его биссектрисой, значит угол ДВС=2*30=60⁰, а это значит, что ΔДВС не только равнобедренный, но и равносторонний, ДВ=ВС=СД=АВ=10 см Другими словами - параллелограмм АВСД есть не что иное, как ромб, составленный из двух равносторонних треугольников со стороной 10 см P abcd=4*10=40см²
Откладываем отрезок, равный первой диагонали и находим его середину ( с циркуля стоим серединный перпендикуляр к диагонали). С транспортира откладываем угол в полученной точке (середина первой диагонали) и проводим наклонную к первой диагонали прямую в обе стороны от ее середины. На этой прямой откладываем отрезки, равные половине второй диагонали, в обе стороны от точки середины первой диагонали. Соединяем концы отрезков (диагоналей). Полученная фигура - параллелограмм, так как ее диагонали в точке пересечения делятся пополам, а это признак параллелограмма.
Нарисуем треугольник. Обозначим его вершины А,В,С.
Из вершины В проведем к АС медиану, продолжим ее на ее же длину. Поставим точку В1.
Соеденим В1 с вершинами треугольника А и С.
Точка М - середина АС и ВМ, а АС и ВМ в то же время диагонали четырехугольника АВСВ1.
Если диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то этот четырехугольник - параллелограмм.
Следовательно, АВ=СВ1 и ВС=АВ1.
Треугольники АВВ1 и ВСВ1 равны как половины параллелограмма.
ВС=АВ1
АВ+АВ1=АВ+ВС
ВВ1 -удвоенная медиана треугольника АВС = как третья сторона этих треугольников не может быть равна, и тем более больше, суммы сторон треугольника АВС.
Сумма двух сторон треугольника больше удвоенной медианы, проведеной из той же вершины, что и требовалось доказать.