Углы при верхнем основании равны по 120 градусов
Углы при нижнем основании равны по 60 градусов
Объяснение:
Проведём две высоты. Получим одинаковые прямоугольные треугольники внутри трапеции. Нижний катет будет равен 1, т.к. (7-5)/2=1
1 = 2/2, т.е. этот катет равен половине гипотенузы, а значит лежит против угла 30 градусов. В середине трапеции образовался прямоугольник, углы которого равны по 90 градусов. 90 + 30 = 120 градусов углы при верхнем основании.
Сумма углов при боковой стороне должна равняться 180 градусов. 180-120 = 60 градусов углы при нижнем основании.
Объяснение:
1) Рассмотрим ΔАСО и ΔFDO.
∠CAO=∠ DFO - по условию,
AO=FO - по условию,
∠СОА = ∠DOF - как вертикальные.
⇒ΔАСО = ΔFDO по стороне и двум прилежащим к ней углам ( ІІ признак равенства треугольников)
Из Равенства треугольников следует равенство сторон: СО=DO
2) Рассмотрим ΔCBO и ΔDEO.
CB=DE и BO=EO - по условию, СО=DO - по доказанному выше.
⇒ΔCBO = ΔDEO по трём сторонам (ІІІ признак равенства треугольников)
Из равенства треугольников следует равенство углов: ∠CВO=∠DЕO,
что и требовалось доказать.