На рисунке голубым это картина. Вокруг окантовка. Видно что в две стороны увеличилась и Ширина и длина.
Значит обозначаем окантовка =Х Ширина стала =2х; Длина= стала 2х; Площадь с окантовкой стала=558см^2 S -площадь прямоугольника; a -ширина b -длина; S=a•b; Уравнение (10+2х)•(20+2х)=504 10•20+10•2х+2х•20+2х•2х-504=0 200+20х+40х+4х^2-504=0 4х^2+60х-304=0 Разделим на 2 все 2х^2+30х-152=0 D=b^2-4•a•c= 30^2- 4•2•(-152)= 900-8•(-152)=900+1216=2116 X1,2=(-b+-корень из D)/(2•a); X1=(-30-46)/2•2=-76/4=-19не подходит; Х2=(-30+46)/2•2=16/4=4 см
Дано: ABCD - трапеция EF - средняя линия EO = 3 см OF = 4 см Найти: AB Решение. 1) Рассмотрим трапецию ABCD. Средняя линия EF параллельна основаниям AB и DC и делит стороны AD и BC трапеции пополам. 2) Рассмотрим треугольники EOD и ABD. Углы EOD и ABD равны как соответственные при пересечении параллельных прямых EF и AB секущей BD. Угол DBC общий. Следовательно, треугольник BOF подобен BDC. 3) Из подобия треугольников следует, что AB / EO = AD / ED => AB = EO * AD / ED = EO * 2ED / ED = EO * 2 = 6 см.
416 см²
Объяснение:
Дано: КМРТ - трапеция, МК⊥КТ, МК=16 см, РТ=20 см. МТ - биссектриса. Найти S(КМРТ).
∠КТМ=∠РТМ по определению биссектрисы
∠РМТ=∠МТК как внутренние накрест лежащие при МР║КТ и секущей МТ, значит ΔМРТ - равнобедренный, МР=РТ=20 см.
Проведем высоту РН=МК=16 см.
КН=МР=20 см.
ΔРТН - прямоугольный, РТ=20 см, РН=16 см, значит ТН=12 см (египетский треугольник).
КТ=КН+ТН=20+12=32 см.
S=(МР+КТ):2*РН=(20+32):2*16=416 см²