В равнобедренном треугольнике биссектриса и высота, проведённые к основанию, совпадают. Пусть в равнобедренном треугольнике ABC с основанием AC проведены биссектрисы AA1,BB1,CC1. Точка O является точкой пересечения биссектрис AA1 и CC1. Так как биссектрисы треугольника пересекаются в одной точке, BB1 проходит через точку O. Так как биссектриса и высота, проведённые к основанию, совпадают, BB1 - высота. Тогда BB1 перпендикулярна AC. Так как точка O лежит на отрезке BB1, прямая BO и прямая BB1 совпадают (это одна и та же прямая, которую можно назвать по-разному). Значит, прямая BO перпендикулярна AC, что и требовалось доказать.
CD=3√2 см
Объяснение:
∆CDB- прямоугольный, равнобедренный треугольник. ВD=DC.
Пусть BD=x; DC=x.
По теореме Пифагора составляем уравнение
х²+х²=6²
2х²=36
х=√18
х=3√2 см CD