1. На каком из рисунков прямые будут параллельны? Поясните свой ответ 116 32 389 B с D E 2. Используя теорегу о внешнем угле трето на нашите утот з В D 3. В прямоутольном треутатнье ABC C-90 43-10 см вс-5 см Навите уты которые образует высота сHскотетам треугольника 4 Раность двух в трех тосторонних тов при пересечении двух параллельных прямых секущей равна 30 Найте эти ты над
Биссектриса "разрезает" треугольник на два. Условно назвав их "левый" и "правый", легко видеть что в подобных треугольниках "сходственные" биссектрисы порождают две пары подобных треугольников. "Левый" из разрезанных подобен "левому", а "правый" - "правому". В самом деле, например, у "левых" треугольников есть по равному углу, оставшемуся от исходного, и равны углы, одной из сторон которых являются биссектрисы. То есть подобие по признаку равенства двух углов.
Кроме того, у "левых" треугольников одной из сторон является сторона исходного треугольника, а другой - биссектриса. Что автоматически означает их пропорциональность, то есть биссектрисы относятся так же как боковые стороны (и не важно, какая пара "сходственных" сторон - вполне достаточно показать для любой, раз они все пропорциональны с коэффициентом подобия).
Уравнение касательной в точке (x1, y1) к эллипсу (x/a)^2 + (y/b)^2 = 1; x*x1/a^2 + y*y1/b^2 = 1; Вывести его проще простого - дифференциал в точке (x1, y1) равен 0, заменяется dx = x - x1; dy = y - y1; получается (x1/a^2)*(x - x1) + (y1/b^2)*(y - y1) = 0; откуда сразу получается нужное уравнение. Касательная в точке (x2, y2) на втором эллипсе (x/с)^2 + (y/d)^2 = 1; x*x2/c^2 + y*y2/d^2 = 1; Эти две прямые должны совпадать. То есть x2/c^2 = x1/a^2; y2/d^2 = y1/b^2; если переписать уравнения эллипсов так a^2*(x1/a^2)^2 + b^2*(y1/b^2)^2 = 1; c^2*(x2/c^2)^2 + d^2*(y2/d^2)^2 = 1; и обозначить u = (x1/a^2)^2 = (x2/c^2)^2; v = (y1/b^2)^2 = (y2/d^2)^2; то получается просто линейная система 2х2; a^2*u + b^2*v = 1; c^2*u + b^2*v = 1; У этой системы единственное решение (если есть, конечно, и не просто есть, а должно быть положительно определено, то есть u > 0; v > 0). Уравнения всех ЧЕТЫРЕХ общих касательных получаются потом перебором знаков перед корнями. То есть уравнения касательных будут +-x*√u +- y*√v = 1; Вот вся теория. Как это выглядит для этой задачки. a^2 = 6; b^2 = 1; c^2 = 4; d^2 = 9; 6*u + v = 1; 4*u + 9*v = 1; u = 4/25; √u = 2/5; v = 1/25; √v = 1/5; +-x*2 +- y = 5; вроде так. (ну, в смысле, 2x + y = 5; 2x - y = 5; -2x + y = 5; -2x - y = 5; ясно, что эти прямые образуют ромб). Решение не получилось бы, если бы эллипсы не пересекались.
Биссектриса "разрезает" треугольник на два. Условно назвав их "левый" и "правый", легко видеть что в подобных треугольниках "сходственные" биссектрисы порождают две пары подобных треугольников. "Левый" из разрезанных подобен "левому", а "правый" - "правому". В самом деле, например, у "левых" треугольников есть по равному углу, оставшемуся от исходного, и равны углы, одной из сторон которых являются биссектрисы. То есть подобие по признаку равенства двух углов.
Кроме того, у "левых" треугольников одной из сторон является сторона исходного треугольника, а другой - биссектриса. Что автоматически означает их пропорциональность, то есть биссектрисы относятся так же как боковые стороны (и не важно, какая пара "сходственных" сторон - вполне достаточно показать для любой, раз они все пропорциональны с коэффициентом подобия).
Это все.