Периметр прямоугольника = 2(а+в), где а -ширина, в - длина. 34 = 2 (а+в); (а+в) = 17; Диагональ разделила прямоугольник на 2 равных треугольника. Рассмотрим один из них. Диагональ стала гипотенузой, (а) и (в) - катетами. Примем (а) = Х, тогда (в) = (17 -Х) По теореме Пифагора определяем X^2 + (17-X)^2= 13^2; Х^2 + 289 - 34X + X^2 = 169; 2X^2 - 34X + 120 = 0 YD =-34^2 - 4(2)(120) = 1156-960 = 196; D =14 X1 = (34 + 14)/4 = 12 (не принимается) X2 =(34-14)/4 = 5 (принимается по условию задачи, потому что ширина (а) = Х должна быть меньше длины (в)=17-Х); 17 - 5 = 12; длина стороны прямоугольника = 12см
Решение:Пусть длина равна х,тогда ширина (17-х) По т.Пифагора имеем:x²+(17-x)²=169 x²+289-34x+x²-169=0 2x²-34x+120=0 x²-17x+60=0 x1=12,длина прямоугольника x2=5,ширина прямоугольника думаю так
Точной даты не существует Начало геометрии было положено в древности при решении практических задач. Со временем, когда накопилось большое количество геометрических фактов, у людей появилась потребность обобщения, уяснение зависимости одних элементов от других, установление логических связей и доказательств. Постепенно создалась геометрическая наука. Крупнейший историк древности Геродот, как и математик Демокрит, философ Аристотель и другие древнегреческие учёные и писатели, считал Египет колыбелью Геометрии. (герпедонапты) . Примерно в 5 – 6 вв. до н. э. в Древней Греции начался новый этап развития геометрии как науки. Произведения, содержащие систематическое изложение геометрии, появились в Греции ещё в 5 в. до н. э. , Произведения Герона Александрийского являются своего рода энциклопедией древнегреческой прикладной механики и практической геометрии. в изложении Герона правила не доказываются, а предлагаются в виде своеобразных «рецептов» . «Геометрикой» Герона пользовались сотни лет в качестве справочника не только греческие, Нои римские землемеры и архитекторы. Но эти сочинения были вытеснены «Началами» Евклида.
Площадь через сторону 14 и высоту к ней S = 1/2*14*12 = 7*12 = 84 см² Площадь через сторону 13 и высоту к ней S = 1/2*13*h₂ = 84 см² 1/2*13*h₂ = 84 h₂ = 84*2/13 = 168/13 см Площадь через сторону 15 и высоту к ней S = 1/2*15*h₃ = 84 см² 1/2*15*h₃ = 84 h₃ = 84*2/15 = 168/15 см
Найдём по известным сторонам первую высоту Полупериметр p = 1/2(13 + 14 + 15) = 21 см Площадь по формуле Герона S = √(21(21-13)(21-14)(21-15)) = √(21*8*7*6) = 7√(3*8*6) = 7*3√(8*2) = 7*3*4 = 84 см² Площадь через сторону 14 и высоту к ней S = 1/2*14*h₁ = 84 см² 1/2*14*h₁ = 84 h₁ = 84/7 = 12 см
34 = 2 (а+в); (а+в) = 17; Диагональ разделила прямоугольник на 2 равных треугольника. Рассмотрим один из них. Диагональ стала гипотенузой, (а) и (в) - катетами. Примем (а) = Х, тогда (в) = (17 -Х) По теореме Пифагора определяем X^2 + (17-X)^2= 13^2; Х^2 + 289 - 34X + X^2 = 169;
2X^2 - 34X + 120 = 0
YD =-34^2 - 4(2)(120) = 1156-960 = 196; D =14
X1 = (34 + 14)/4 = 12 (не принимается)
X2 =(34-14)/4 = 5 (принимается по условию задачи, потому что ширина (а) = Х должна быть меньше длины (в)=17-Х);
17 - 5 = 12; длина стороны прямоугольника = 12см