Для начала вспомним, что для расчета объема потребуется высота пирамиды. Мы можем найти ее по теореме Пифагора. Для этого нам потребуется длина диагонали, а точнее – ее половина. Тогда зная две из сторон прямоугольного треугольника, мы сможем найти высоту. Для начала находим диагональ: d^2=a^2+a^2 Подставим значения в формулу: d^2=6^2+6^2=36+36=72 cm
Высоту h мы найдем с и ребра b: h=sqrt{{d/2}^2+b^2} h=sqrt{{{72}/2}^2+5^2}=sqrt{36+25}=sqrt{61}=7,8 cm
Теперь найдем площадь квадрата, который лежит в основании правильной пирамиды: S=6^2=36{cm}^2 Подставим найденные значения в формулу расчета объема: V={1/3}*36*7,8=14,6{cm}^3
Если по условиям даны длина ребра c правильной пирамиды и длина стороны основания a, то можно найти значение по следующей формуле: S_bok={1/2}a sqrt{5^2-{{6^2}/4}}=3*sqrt 16}=12
Площадь всей пирамиды равна: S=4*S_bok + S_osn= 4*12 + 36=84
1. Горизонтальная прямая линия 2. Перпендикуляр к ней 2.1 Окружность радиуса R с центром на прямой 2.2 Окружность радиуса R с центром в точке пересечения прямой и первой окружности 2.3 Прямая через точки пересечения двух окружностей. Это перпендикуляр 3. Угол в 30 градусов с перпендикуляром 3.1 Окружность радиуса R с центром в точке пересечения прямой и перпендикуляра 3.2 Окружность радиуса 2R с центром в точке пересечения первой окружности и перпендикуляра 3.3 Прямая через точки пересечения окружности радиуса 2R с прямой и с перпендикуляром. Угол 30 градусов с вертикалью построен 4. Биссектриса угла в 30 градусов 4.1 Окружность из центра угла 30° Радиус произвольный 4.2 Окружность из точки пересечения окружности пункта 4.1 с одной из сторон угла радиусом равным расстоянию между точками пересечения сторон угла окружностью 4.1 4.3 Окружность из точки пересечения окружности пункта 4.1 с другой стороной угла радиусом равным расстоянию между точками пересечения сторон угла окружностью 4.1 4.4 Прямая линия между точками пересечения окружностей 4.2 и 4.3 5. Всё готово, 105° = 90° + 15°
d^2=a^2+a^2
Подставим значения в формулу:
d^2=6^2+6^2=36+36=72 cm
Высоту h мы найдем с и ребра b:
h=sqrt{{d/2}^2+b^2}
h=sqrt{{{72}/2}^2+5^2}=sqrt{36+25}=sqrt{61}=7,8 cm
Теперь найдем площадь квадрата, который лежит в основании правильной пирамиды:
S=6^2=36{cm}^2
Подставим найденные значения в формулу расчета объема:
V={1/3}*36*7,8=14,6{cm}^3
Если по условиям даны длина ребра c правильной пирамиды и длина стороны основания a, то можно найти значение по следующей формуле:
S_bok={1/2}a sqrt{5^2-{{6^2}/4}}=3*sqrt 16}=12
Площадь всей пирамиды равна:
S=4*S_bok + S_osn= 4*12 + 36=84