Соединим центр правильного многоугольника с вершинами. ΔАОВ - один из образовавшихся треугольников. Проведем в нем высоту ОН.
Тогда ОА = ОВ = R = 8, радиус описанной окружности,
OH = r = 4√3, радиус вписанной окружности для многоугольника.
∠АОВ = 360° / n, где n - количество сторон многоугольника, тогда
α = ∠АОВ / 2 = 180°/n.
Из прямоугольного треугольника АОН:
cosα = r / R = 4√3 / 8 = √3/2, ⇒
α = 30°
180° / n = 30°
n = 6
Т.е. это правильный шестиугольник.
А в правильном шестиугольнике сторона равна радиусу описанной окружности.
ответ: 8.
А1. Верно ли высказывание?
2) Если один из углов прямой, то треугольник
остроугольный.
Неверное утверждение, потому что если один из углов прямой то треугольник называется прямоугольным .
4) Сторона прямоугольного треугольника, лежащая
против прямого угла, называется гипотенузой.
Верно
А2. Выполните тест.
1. В треугольнике ABC: AC-BC-AB. Какой угол
меньший?
для решения используем то, что напротив большей стороны лежит больший угол (и наоборот).
Самая большая сторона тут ВС, средняя АС, а самая маленькая АВ. Значит самый большой уголА, средний В, и самый маленький уголС.
а) уголА > углаВ
б) уголА > углаС
в) уголВ > углаС.
а) В; б) C; в) А.