Трикутник АВС задано координатами вершин А (10;-3), В(-8;0),С(-1;5). Знайти довжину висоти СD трикутника ABC, якщо відомо що ордината точки D на 1 одиничний відрізок більша від її абсциси
1) 2+7=9 360°:9=20° в одной части. Значит дуга АМС имеет градусную меру 40° Угол АОС - центральный угол, измеряется дугой на которую он опирается. ∠АОС=40° ⇒∠АВС=140° ( сумма углов четырехугольника равна 360° и углы ВАО и ВСО - прямые)
Отрезки касательных, проведенных к окружности из одной точки равны, АВ=ВС Треугольник АВС равнобедренный с углом 140° при вершине, значит углы при основании (180°-140°):2=20° О т в е т. 20°; 140°; 20°
2) 4+5=9 360°:9=20° в одной части. Значит дуга АМС имеет градусную меру 80° Угол АОС - центральный угол, измеряется дугой на которую он опирается. ∠АОС=80° ⇒∠АВС=100° ( сумма углов четырехугольника равна 360° и углы ВАО и ВСО - прямые)
Отрезки касательных, проведенных к окружности из одной точки равны, АВ=ВС Треугольник АВС равнобедренный с углом 100° при вершине, значит углы при основании (180°-100°):2=40° О т в е т. 40°; 100°; 40°
1 В прямоугольном треугольнике против угла в 30 ° лежит катет, равны половине гипотенузы Н=2√3 (2R)²=(4√3)²-(2√3)²=48-12=36=6² ⇒ 2R=6 ⇒ R=3 V(цилиндра)=πR²·H=π·36·(2√3)=72π·√3 куб. см 2 Высота равнобедренного треугольника ( сечения конуса) является его медианой и биссектрисой. В прямоугольном треугольнике против угла в 30° лежит катет, равный половине гипотенузы R=L/2=3 cм
S(бок)=πR·L=π·3·6=18π кв см 3. По теореме Пифагора находим хорду АВ АВ²=17²-15²=289-225=64=8² АВ=8 В равнобедренном треугольнике АОВ высота, проведенная из точки О служит расстоянием между осью цилиндра и сечением, проведенным чере хорду АВ. Высота равнобедренного треугольника является и медианой, высота разделила треугольник АОВ на два прямоугольных треугольника с гипотенузами 5 и одним катетом 4, второй катет 3 ( треугольник египетский) ответ. 3 см
360°:9=20° в одной части.
Значит дуга АМС имеет градусную меру 40°
Угол АОС - центральный угол, измеряется дугой на которую он опирается.
∠АОС=40° ⇒∠АВС=140° ( сумма углов четырехугольника равна 360° и углы ВАО и ВСО - прямые)
Отрезки касательных, проведенных к окружности из одной точки равны, АВ=ВС
Треугольник АВС равнобедренный с углом 140° при вершине, значит углы при основании (180°-140°):2=20°
О т в е т. 20°; 140°; 20°
2) 4+5=9
360°:9=20° в одной части.
Значит дуга АМС имеет градусную меру 80°
Угол АОС - центральный угол, измеряется дугой на которую он опирается.
∠АОС=80° ⇒∠АВС=100° ( сумма углов четырехугольника равна 360° и углы ВАО и ВСО - прямые)
Отрезки касательных, проведенных к окружности из одной точки равны, АВ=ВС
Треугольник АВС равнобедренный с углом 100° при вершине, значит углы при основании (180°-100°):2=40°
О т в е т. 40°; 100°; 40°