Четырёхугольник KLMN со сторонами KL=6 и MN=18 вписан в окружность. Диагонали KM и LN пересекаются в точке S, причём ∠KSL=120°. Найдите радиус окружности, описанной около этого четырёхугольника.
Всё решается очень просто. Если радиус окружности равен "r", а сторона треугольника равна "а", то можно составить простое уравнение (по условию задачи)
3*а=2*pi*r Тогда сторона треугольника а=(2/3)*pi*r Радиус вписанной окружности в равносторонний треугольник вычисляется по формуле: а*(sqrt 3)/6 "Площадь данного круга"=pi*r^2 Осталось в формулу "а*(sqrt 3)/6" подставить "а=(2/3)*pi*r", возвести в квадрат и умножить на "pi", найти площадь вписанной окружности. И последнее действие: разделить pi*r^2 на площадь вписанной окружности в треугольник. Вот и всё решение.
Всё решается очень просто. Если радиус окружности равен "r", а сторона треугольника равна "а", то можно составить простое уравнение (по условию задачи)
3*а=2*pi*r Тогда сторона треугольника а=(2/3)*pi*r Радиус вписанной окружности в равносторонний треугольник вычисляется по формуле: а*(sqrt 3)/6 "Площадь данного круга"=pi*r^2 Осталось в формулу "а*(sqrt 3)/6" подставить "а=(2/3)*pi*r", возвести в квадрат и умножить на "pi", найти площадь вписанной окружности. И последнее действие: разделить pi*r^2 на площадь вписанной окружности в треугольник. Вот и всё решение.
есекаются в точке S, причём ∠KSL=120°. Найдите радиус окружности, описанной около этого четырёхугольника.
Слишком коротко. Напишите минимум 20 символов, чтобы объяснить все.
Объяснение: