1. Тут очень просто - r = (a + b - c)/2 = (a + b)/2 - R; r + R = (a + b)/2 должно быть для прямоугольного треугольника. В данном случае это не так. 2. Если катеты a и b, то a^2 + b^2 = (25/4)^2; a*b = 2*S = c*h = 25π/4; Эту систему можно решить относительно a и b, если c > 2*h, в данном случае это не так, 2π> 25/4; Условие с>2h легко получить прямо из системы, но я не буду это делать, просто напомню, что в прямоугольном треугольнике не только R = c/2 (см пункт 1), но и медиана m к гипотенузе m = c/2; поскольку m > h (высота - это перпендикуляр, она короче наклонной из той же точки), то в прямоугольном треугольнике обязательно с > 2h; в данном случае это не так.
Угол АОD как вертикальный равен углу ВОС. Рассмотрим треугольник АВС. Он прямоугольный, с прямым углом В, опирающимся на диаметр АС. Так как АО = ОС как радиусы окружности, ВО - медиана, выведенная из прямого угла. Сумма всех внутренних углов треугольника равна 180 градусам. Тогда угол ВАС равен 180 - 90 - 78 = 12 градусам. Треугольник ВОА равнобедренный, так как ВО = ОА как радиусы. Угол ОВА равен 12 градусам, тогда угол ВОА равен 180 - 12 - 12 = 156 градусам, а угол ВОС, смежный углу ВОА, равен 180 - 156 = 24 градусам. Тогда и угол АОD содержит 24 градуса.
Угол АОD как вертикальный равен углу ВОС. Рассмотрим треугольник АВС. Он прямоугольный, с прямым углом В, опирающимся на диаметр АС. Так как АО = ОС как радиусы окружности, ВО - медиана, выведенная из прямого угла. Сумма всех внутренних углов треугольника равна 180 градусам. Тогда угол ВАС равен 180 - 90 - 78 = 12 градусам. Треугольник ВОА равнобедренный, так как ВО = ОА как радиусы. Угол ОВА равен 12 градусам, тогда угол ВОА равен 180 - 12 - 12 = 156 градусам, а угол ВОС, смежный углу ВОА, равен 180 - 156 = 24 градусам. Тогда и угол АОD содержит 24 градуса.
2. Если катеты a и b, то
a^2 + b^2 = (25/4)^2;
a*b = 2*S = c*h = 25π/4;
Эту систему можно решить относительно a и b, если c > 2*h, в данном случае это не так, 2π> 25/4;
Условие с>2h легко получить прямо из системы, но я не буду это делать, просто напомню, что в прямоугольном треугольнике не только R = c/2 (см пункт 1), но и медиана m к гипотенузе m = c/2; поскольку m > h (высота - это перпендикуляр, она короче наклонной из той же точки), то в прямоугольном треугольнике обязательно с > 2h; в данном случае это не так.