5.В равнобедренной трапеции диагональ перпендикулярна боковой стороне. Найдите площадь трапеции, если большее основание равно 4корень3, а один из углов трапеции равен 60⁰ , быстрее 70б
АВ=ВС, АВ - диаметр окружности. Окружность пересекает стороны АС и ВС в точках М и Н соответственно. ВН=7 см, МС=3 см. Построим отрезки ВМ и АН, которые пересекаются в точке К. ∠ВМА=∠ВНА=90° так как они вписанные в окружность и опираются на дугу в 180°. В равнобедренном тр-ке АВС ВМ⊥АС, значит АМ=МС ⇒ АС=2МС=6 см. Тр-ки АНС и ВМС подобны т.к. ∠С - общий и оба прямоугольные. Пусть НС=х, ВС=ВН+НС=7+х. ВС/МС=АС/НС, (7+х)/3=6/х, 7х+х²=18, х²+7х-18=0, х>0, значит х≠-9, х=2. НС=2 см, АВ=ВС=7+2=9 см - это ответ.
АВ=ВС, АВ - диаметр окружности. Окружность пересекает стороны АС и ВС в точках М и Н соответственно. ВН=7 см, МС=3 см. Построим отрезки ВМ и АН, которые пересекаются в точке К. ∠ВМА=∠ВНА=90° так как они вписанные в окружность и опираются на дугу в 180°. В равнобедренном тр-ке АВС ВМ⊥АС, значит АМ=МС ⇒ АС=2МС=6 см. Тр-ки АНС и ВМС подобны т.к. ∠С - общий и оба прямоугольные. Пусть НС=х, ВС=ВН+НС=7+х. ВС/МС=АС/НС, (7+х)/3=6/х, 7х+х²=18, х²+7х-18=0, х>0, значит х≠-9, х=2. НС=2 см, АВ=ВС=7+2=9 см - это ответ.
9√3 ед²
Объяснение:
Дано: КМРТ - трапеция, КМ=РТ, ∠Т=60°, КР⊥РТ; КТ=4√3. Найти S(КМРТ).
Расcмотрим ΔКРТ - прямоугольный; ∠РКТ=90-60=30°, значит, РТ=0,5КТ=2√3 по свойству катета, лежащего против угла 30 градусов.
Проведем высоту РН и рассмотрим ΔРТН - прямоугольный;
∠ТРН=90-60=30°, значит, ТН=0,5РТ=√3.
Найдем РН по теореме Пифагора:
РН²=РТ²-ТН²=12-3=9; РН=3.
Найдем МР. ∠МРК=∠РКН=30° как внутренние накрест лежащие при МР║КТ и секущей КР; ∠МКР=60-30=30°, значит, ΔКМР - равнобедренный, МР=КМ=2√3.
S(КМРТ)=(МР+КТ)/2 * РН = (2√3+4√3)/2 * 3=(3√3)*3=9√3 ед²