ответ: после построения диагоналей ромб разбивается на 4 треугольника. диагонали ромба располагаются под прямым углом, то есть, треугольники, которые образовались, оказываются прямоугольными.
обозначим большую и малую диагонали ромба как d₁ и d₂, а углы ромба — а (острый) и в (тупой), теперь из формулы
tg a = 2/((d₁/d₂)-(d₂/d₁)) находим
tg a = 2/((2√3 /2)-(2/2√3)) = 2/(√3-1/√3)=
2/(√3-√3/3=2/(√3(1-1/3)= 2/(√3(2/3)=
2√3/2=√3
tg 60°=√3
углы ромба 60° и 120°
подробнее - на -
объяснение:
Меньший катет лежит против меньшего угла CAB, следовательно больший угол CBA(т.е тот который больше другого острого угла) лежит против большего катета.
Пусть угол CAB=x
Тогда угол ABC=x+a
Т.к. сумма углов треуг-ка равна 180, а угол АСВ=90, легко вычислить, что
угол CAB=180-90-(x+a)
x=180-90-x-a
2x=90-a
x=(90-a)/2
Далее необходимо доказать подобие треуг-ков ACB и DCE
Т.к треуг ACB и DCE подобны, то угол BAC=углу EDC
ED=EC*sin угла CDE = b/2 *sin ((90-a)/2)