Площадь пола 13,5 •2,25=30,375 м². Площадь паркетной дощечки 0,3•0,05=0,015 м². 30,375:0,015=2025 (шт).
Заметим, что не всегда найденное таким количество дощечек или плиток для покрытия пола будет точным. Плитки могут не помещаться полностью по длине и ширине пола. Поэтому нужно вычислить количество дощечек, которые могут уместиться на полу соответственно их размерам.
13,5 м=1350 см - кратно и 30 см и 5 см. 2,25 м=225 см - кратно 5 см и не кратно 30 см. Если располагать дощечки длиной вдоль длины пола, их поместится ровно 1350:30=45 шт. по длине пола и 225:5=45 по ширине пола. Всего 45•45=2025 дощечек покроют полностью поверхность пола комнаты. Но по длине по ширине пола не помещаются целое количество дощечек. 225:30=7,5 шт.
Размер данных дощечек позволяет покрыть полностью ими пол данного размера, меняя их расположение, например, часть располагать вдоль длинной стороны пола, часть – поперёк, создавая интересный рисунок. Попробуйте, как можно их расположить иным чтобы не осталось непокрытых участков пола и не пришлось разрезать дощечки.
1: тр АВС - (уг С=90*) СН - высота ВС=16 см АВ = 20 см Найти: НВ - ?
Решение: 1) По т Пифагора к тр АВС: АС² = АВ²-ВС²; АС²=400-256 = 144; АС = 12 см 2) Пусть НВ = х (см), тогда АН=(20-х) см. Выразим катет НС из прямоугольных треугольников АНС и ВНС, в которых уг Н =90*. Получим уравнение: 144-(20-х)² = 256-х² 144-400+40х-х²=256-х² -256+40х=256 40х=512 х=512 : 40 х=12,8 (см) - проекция НВ катета ВС на гипотенузу АВ 2
Рассмотрим: АБС АБ=41 см АС=9 см АБ'=АС' + ВС' ( по т. Пифагора) ВС'=АБ' - АС' ВС' = 41' - 9' ВС'= 1681-81 ВС'=1600 ВС=40 см Р=АБ+БС+АС=41+40+9=90 см ('=в квадрате) ответ: Р=90 см. 3 т.к. диагонали ромба, пересекаясь, обазуют угол в 90 градусов и делятся пополам, то ром делится на 4 одинаковых прямоугольных треугольника. рассмотрим один из них. сторона ромба будет являться гипотенузой, тогда найдем ее по теореме пифагора: корень из (8*8+4*4)=4 корня из 54 Если известны все стороны трапеции, можно найти диагональ по формуле: d=√(c²+ab), где a и b - основания, с - боковая сторона.Пусть дана трапеция АВСД - равнобедренная. АД=21 см, ВС=11 см.АВ=СД=13 смАС=√(АВ²+ВС*АД)=√(13²+11*21)=√(169+231)=√400=20 см.ответ: 20 см.
5
х-наклонная у-наклонная , у=х+7h-высота от точки до прямойh=√x²-6² , иh=√(x+7)²-15² (√х²-6)=(√(х+7)²-15²)) , возведем обе части ур-я в квадратх²-6²=(х+7)²-15²х²-36=х²+14х+49-22514х=140х=10 сму=10+7=17 см
Площадь пола 13,5 •2,25=30,375 м². Площадь паркетной дощечки 0,3•0,05=0,015 м². 30,375:0,015=2025 (шт).
Заметим, что не всегда найденное таким количество дощечек или плиток для покрытия пола будет точным. Плитки могут не помещаться полностью по длине и ширине пола. Поэтому нужно вычислить количество дощечек, которые могут уместиться на полу соответственно их размерам.
13,5 м=1350 см - кратно и 30 см и 5 см. 2,25 м=225 см - кратно 5 см и не кратно 30 см. Если располагать дощечки длиной вдоль длины пола, их поместится ровно 1350:30=45 шт. по длине пола и 225:5=45 по ширине пола. Всего 45•45=2025 дощечек покроют полностью поверхность пола комнаты. Но по длине по ширине пола не помещаются целое количество дощечек. 225:30=7,5 шт.
Размер данных дощечек позволяет покрыть полностью ими пол данного размера, меняя их расположение, например, часть располагать вдоль длинной стороны пола, часть – поперёк, создавая интересный рисунок. Попробуйте, как можно их расположить иным чтобы не осталось непокрытых участков пола и не пришлось разрезать дощечки.