Смотрите, треугольник, составленный наклонной боковой стороной, её проекцией на основание (эта проекция равна 18 по условию) имеет отношение одного из катетов к гипотенузе 4/5. Поэтому это египетский треугольник (18, 24, 30). (Это не догадка, а точное вычисление!) Таким образом, высота трапеции 24. Она же - другая боковая сторона. А малая диангональ равна 26. Поэтому малое основание равно 10 (здесь опять пифагоров треугольник 10, 24, 26, но можно и "честно" сосчитать по теореме Пифагора, конечно, результат будет таким же).
Итак, основания 10 и 28, средняя линяя 19, высота 24, площадь 19*24 = 456.
А ничего хорошего не получится всего это решать с векторных методов.
Надо найти угол между векторами ВА = (1,8) и CD = (7,1) (я перевернул чертеж, или- если хотите, перечислил вершины против часовой стрелки, на ответ это не влияет)
Модули равны
ВА = корень(65); CD = корень(50);
скалярное произведение
(ВА,CD) = 1*7 + 8*1 = 15;
cos(AMD) = 15/корень(65*50) = 3/корень(130);
Это почти 75 градусов (точнее 74,7448812969422)
можете жаловаться :)))
Могу предложить решение и без векторов. Дело в том, что если из точки D провести прямую II CB, отложить на ней отрезок, равный СВ (пусть получилась точка D1) и соединить D1 и В, то CDD1B - параллелограмм. Поэтому угол АМD = угол АВD1, и нам достаточно найти AD1. Но если мы теперь опустим перпендикуляр на АО (точка К) из точки D1, то по построению точки D1 имеем АК = 7, КD1 = 6, АD1 = корень(7^2 + 6^2) = корень(85);
АВ и ВD1 мы уже знаем ВА = корень(65); BD1 = CD = корень(50);
Осталось только вычислить угол при между сторонами
корень(65) и корень(50), если третья сторона корень(85);
Первое, что можно сделать - сократить все стороны на равное число (преобразование подобия не меняет углы), делим все на корень(5)
имеем
корень(13) и корень(10), если третья сторона корень(17);
по теореме косинусов
17 = 13 + 10 - 2*корень(130)*cos(Ф); cos(Ф) = 3/корень(130)
удивительно похоже на предыдущий ответ :
b*sin(α) = a/2; b*cos(α) = h; (высота к основанию); S = a*h/2 = b^2*sin(α)*cos(α);
при этом полупериметр p = b + a/2 = b*(1 + cos(α)); S = p*r;
b^2*sin(α)*cos(α) = b*(1 + cos(α))*r;
по теореме синусов b = 2*R*sin(α);
2*R*(sin(α))^2*cos(α) = r*(1 + cos(α));
2*R*(1 - (cos(α))^2)*cos(α) = r*(1 + cos(α));
2*(1 - cos(α))*cos(α) = r/R; вот это квадратное уравнение относительно cos(α);
Пусть cos(α) = x;
x^2 - x + r/(2R) = 0;
x = 1/2 +- √(1/4 - r/(2R));
это в сущности ответ. Интересно, что получилось 2 решения, и оба "физически" возможны. При r/(2R) = 12/50; возможны 2 случая
1. cos(α) = 3/5; тогда sin(α) = 4/5; b = 50*4/5 = 40; a = 2*b*cos(α) = 80*3/5 = 48;
в этом случае треугольник составлен из двух египетских (24, 32, 40)
2. cos(α) = 2/5; тогда sin(α) = √21/5; b = 50*√21/5 = 10√21; a = 2*b*cos(α) = 8√21;