ответ:
объяснение:
найти угол между прямой 2x+3y-1=0 и прямой проходящей через точки
m₁ (-1; 2) и m ₂(0; 3) .
уравнение прямой проходящей через точки m₁ (-1; 2) и m ₂(0; 3) :
y - 2 = ( 3 - 2 ) /(0 -(-1) *( x -(-1))⇔ x - y +3 = 0
найдем yгол α между прямой 2x+3y - 1=0 и прямой x - y +3 = 0 :
cosα = |a₁a₂ +b₁b₂| /√( a₁² +b₁²) * √(a₂² +b₂²) =
|2*1 +3*(-1)| /√( 2² +3²) * √(1² +(-1)²) = 1 /√ 13 * √2 ;
cosα = 1/ √26 ; α =arc cos 1/ √26
1) находим гипотенузу за теоремой пифагора, AB=25.
есть формула нахождения высоты за тремя сторонами: Ha=2корень(p(p-a)(p-b)(p-c))/a
p=(a+b+c)/2
подставив в эту формулу данные, находим высоту 12, она есть диаметром, значит r=12/2=6
длина окружности=2пr=12п
2)Sквадрата=a^2 a=корень из S
r вписанной окружности для квадрата = a/2
r=S^2/2 длина=2пr=S^2п
нарисуй квадрат и вписанный в него круг, точками касания будут середины сторон квадрата, берем те, которые на соседних сторонах и отмечаем эту дугу. угол, на которую она опирается - прямой. это видно по рисунку
90*=п/2 длина дуги=r*альфа=S^2/2*п/2=пS^2/4
площадь вне окружности можно найти отняв от площади квадрата площадь окружности. Sокружности=пr^2=(S^4п)/4 S вне окружности=S-(S^4п)/4
равнобедренный и прямоугольный