Поскольку в условиях указана только величина расстояния от центра окружности до прямой, но не указано под каким углом проведена воображаемая линия от центра до прямой, то возможны следующие варианты:
1. Прямая представляет собой касательную к окружности. В этом случае окружность и прямая будут иметь только одну общую точку, расположенную на расстоянии радиуса окружности от ее центра.
2. Прямая может пересекать окружность как угодно. В этом случае мы получим 2 точки пересечения, каждая из которых будет удалена от центра окружности на расстояние радиуса.
Окружность 1.Свойства окружности. 1) Диаметр, перпендикулярный хорде, делит ее пополам. 2) Диаметр, проходящий через середину хорды, не являющейся диаметром, перпендикулярен этой хорде. 3) Серединный перпендикуляр к хорде проходит через центр окружности. 4) Равные хорды удалены от центра окружности на равные расстояния. 5) Хорды окружности, удаленные от центра на равные расстояния, равны. 6) Окружность симметрична относительно любого своего диаметра. 7) Дуги окружности, заключенные между параллельными хордами, равны. 8) Из двух хорд больше та, которая менее удалена от центра. 9) Диаметр есть наибольшая хорда окружности. 2.Замечательное свойство окружности. Геометрическое место точек M, из которых отрезок AB виден под прямым углом (AMB = 90°), есть окружность с диаметром AB без точек A и B. 3.Свойство серединных перпендикуляров к сторонам треугольника. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке, которая является центром окружности, описанной около треугольника. 4.Линия центров двух пересекающихся окружностей перпендикулярна их общей хорде. 5.Центр окружности, описанной около прямоугольного треугольника — середина гипотенузы. Это нужно запомнить и знать.Окружность симметрична относительно центра и относительно любого своего диаметра.
Поскольку в условиях указана только величина расстояния от центра окружности до прямой, но не указано под каким углом проведена воображаемая линия от центра до прямой, то возможны следующие варианты:
1. Прямая представляет собой касательную к окружности. В этом случае окружность и прямая будут иметь только одну общую точку, расположенную на расстоянии радиуса окружности от ее центра.
2. Прямая может пересекать окружность как угодно. В этом случае мы получим 2 точки пересечения, каждая из которых будет удалена от центра окружности на расстояние радиуса.