М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mashakostyuk8
mashakostyuk8
14.04.2023 16:59 •  Геометрия

Кут C рівнобедрений трикутник ABC з основною а це дорівнює 66 ° AK висота трикутника знайти кути трикутника ABK

👇
Открыть все ответы
Ответ:
Xb000
Xb000
14.04.2023

Объяснение:

Дана правильная треугольная пирамида. Её высота Н равна a√3, радиус окружности, описанной около её основания, равен 2a.

Найти: а) апофему А пирамиды.

Радиус R окружности, описанной около её основания, равен 2/3 высоты основания, то есть R = в√3/3, где в - сторона основания.

Находим сторону основания: в = R/(√3/3) = R√3 = 2a√3.

Отсюда апофема равна: А = √(Н² + (R/2)²) = √(3a² + a²) = √4a² = 2a.

Величина R/2 равна 1/3 высоты основания или радиусу вписанной окружности в основание.

б) угол α между боковой гранью и основанием равен:

α = arc tg(H/(R/2)) = arc tg(a√3/a) = arc tg√3 = 60 градусов.

в) площадь Sбок боковой поверхности.

Периметр основания Р = 3в = 3*2a√3 = 6a√3.

Sбок = (1/2)РА = (1/2)*(6a√3)*2а = 6a²√3 кв.ед.

г) плоский угол γ при вершине пирамиды(угол боковой грани).

γ = 2arc tg((в/2)/А) = 2arc tg((2а√3/2)/2а) = 2arc tg(√3/2) ≈ 1,42745 радиан или 81,7868 градуса.

4,8(3 оценок)
Ответ:
yohoho365
yohoho365
14.04.2023

Площадь S‍1 ‍ боковой поверхности призмы равна произведению периметра перпендикулярного сечения призмы на её боковое ребро. Плоскость перпендикулярного сечения пересекает боковые грани по их высотам. Поэтому периметр перпендикулярного сечения равен сумме этих высот, т. е. 3*2=6.

‍ Значит, S‍1 = 3al = 18

‍ПустьS --‍ площадь основания призмы. Площадь ортогональной проекции основания призмы на плоскость, перпендикулярную боковым рёбрам, равна площади перпендикулярного сечения, делённой на косинус угла между плоскостями основания и перпендикулярного сечения. Этот угол равен углу между боковым ребром и высотой призмы, т. е. 60‍∘.

‍ Поэтому

S2= 2√3

Следовательно, площадь полной поверхности призмы равна



 = 18 + 4√3
4,6(99 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ