М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Можете с этим буду очень благодарен

👇
Открыть все ответы
Ответ:
petrachenkov201
petrachenkov201
27.06.2020
Пусть ABCD - прямоугольник площади 48, E, F, G, H - середины его сторон. Нужно вычислить площадь шестиугольника AEFCGH. Вычислим площади треугольников EBF и GHD и вычтем из их площади прямоугольника. Очевидно, что тогда мы получим площадь шестиугольника.

Пусть AB=a, BC=b. Так как E - середина AB, BE=a/2. Так как F - середина BC, BF=b/2. Тогда площадь треугольника EBF равна 1/2*a/2*b/2=ab/8=48/8=6см² (площадь прямоугольника равна ab). Аналогично, так как G - середина CD и H - середина AD, GD=a/2, HD=b/2, площадь треугольника GHD равна 1/2*a/2*b/2=ab/8=6см².

Таким образом, площадь шестиугольника равна 48-6-6=36см²
Решите . площадь прямоугольника равна 48 см кв. найдите площадь шестиугольника, вершинами которого я
4,6(71 оценок)
Ответ:
MrReizer
MrReizer
27.06.2020

Биссектриса делит угол пополам, т.е. ∠ABD = ∠DBC; ∠BAD=∠DAC.

1) \sf \angle \,BAD=\frac{1}{2}\angle\, A=\frac{1}{2}\cdot 50^\circ=25^\circ∠BAD=21∠A=21⋅50∘=25∘

\sf \angle\, ABD=\frac{1}{2}\angle \, B=\frac{1}{2}\cdot100^\circ=50^\circ∠ABD=21∠B=21⋅100∘=50∘

И рассмотрим треугольник ABD в нем сумма углов должна быть равна 180°,т.е. \sf \angle \,ADB=180^\circ-25^\circ-50^\circ=105^\circ∠ADB=180∘−25∘−50∘=105∘

2) Аналогично с примером 1)

\sf \angle \,BAD=\frac{1}{2}\angle\, A=\frac{1}{2}\cdot \alpha=\frac{\alpha}{2}∠BAD=21∠A=21⋅α=2α

\sf \angle\, ABD=\frac{1}{2}\angle \, B=\frac{1}{2}\cdot\beta=\frac{\beta}{2}∠ABD=21∠B=21⋅β=2β

\sf \angle \,ADB=180^\circ-\frac{\alpha}{2}-\frac{\beta}{2}=180^\circ-\frac{1}{2}(\alpha+\beta)∠ADB=180∘−2α−2β=180∘−21(α+β)

3) Сумма углов треугольника ABC равна 180°, т.е. ∠A+∠B+∠C=180°.

∠A + ∠B + 130° = 180°

∠A + ∠B = 180° - 130°

∠A + ∠B = 50°

∠ADB = 180° - 1/2(∠A + ∠B) = 180° - 1/2 * 50° = 180° - 25° = 155°

4) Аналогично с примером 3)

∠A + ∠B + ∠C = 180°

∠A + ∠B + \gammaγ = 180°

\sf \angle\, A+\angle \, B=180^\circ-\gamma∠A+∠B=180∘−γ

Тогда

\begin{gathered}\sf \angle\, ADB=180^\circ-\frac{1}{2}(\angle \, A+\angle \, B)=180^\circ-\frac{1}{2}(180^\circ-\gamma)=180^\circ-90^\circ+\frac{\gamma}{2}=\\ \\ =90^\circ+\frac{\gamma}{2}\end{gathered}∠ADB=180∘−21(∠A+∠B)=180∘−21(180∘−γ)=180∘−90∘+2γ==90∘+2γ

4,7(50 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ