Мага́дха (санскр. मगध) — древняя страна и историческая область в Индии, упоминаемая ещё в Рамаяне и Махабхарате, управлялась царями-буддистами. За долгую историю Индии сменялось множество династий Магадхи (Шайшунага, Нанда и др.). Магадха входила в список шестнадцати махаджанапад — больших государств в буддийских и джайнских источниках. Царь Бимбисара (543—491 до н. э.) из династии Харьянка, живший во времена Будды развитию буддизма и хорошо относился к джайнизму.
Образование Магадхи, по сведению в ведических текстах, произошло около 600 года до н. э. Самое раннее упоминание Магадхи происходит в Атхарваведе, где они перечисляются наряду с ангами, гандхари и муджаватами. Ядром королевства была область Бихара к югу от Ганга; его первой столицей была Раджагриха (современный Раджгир), затем Паталипутра (современная Патна). Магадха расширилась, когда была присоединена большая часть Бихара и Бенгалии с завоеванием Конфедерации Ваджжи и Анги. В конечном итоге королевство Магадха охватило Бихар, Джаркханд, Ориссу, Западную Бенгалию, восточный Уттар-Прадеш и районы современных Бангладеш и Непала.
Объем конуса находят по формуле: V = 1/3 · Sосн · H, где Sосн - площадь основания, H - высота. В основании - круг, Sосн = πR², где R - радиус основания.
Пусть дан конус (см. рис.) . SО - высота, SВ - образующая, ОВ - радиус. По условию SО : SВ = 4 : 5 и V = 96π см³.
ΔSОВ - прямоугольный. Если принять, что SО = (4х) см, SВ = (5х) см, то по теореме Пифагора ОВ² = SВ² - SО² = (5х)² - (4х)² = 25х² - 16х² = 9х², откуда, учитывая, что длины сторон положительны, ОВ = 3х (см).
Подставляем полученные выражения в формулу объема:
V = 1/3 · πR² · H = 1/3 · π · ОВ² · SО = 1/3 · π · (3х)² · 4х = 12πх³ = 96π, т.е.
12πх³ = 96π,
х³ = 8,
х = 2.
Тогда ОВ = 3 · 2 = 6 (см), SB = 5 · 2 = 10 (см).
Площадь полной поверхности конуса равна:
Sполн = Sосн + Sбок = πR² + πRL = πR(R + L), где R - радиус основания, L - образующая конуса.
Значит, Sполн = π · ОВ · (ОВ + SВ) = π · 6 · (6 + 10) = 6π · 16 = 96π (см²).
ответ: 96 см².