(х-х₀)²+(y-y₀)²=R² - уравнение окружности в общем виде
Окружность проходит через точки (6;0) и (0;8), следовательно,
х=6; y=8;
Центр окружности (x₀;y₀) лежит на оси Оу, следовательно,
x₀=0
Значит, уравнение окружности можно записать так:
(6-0)²+(0-y₀)²=R²
36+y₀²=R²
или так:
(0-0)²+(8-y₀)²=R²
64-16y+y₀²=R²
Т.к. это два уравнения одной и той же окружности, приравняем их левые части, получим:
36+y₀²=64-16y₀+y₀²
16y₀=64-36
16y₀=28
y₀=1,75
(0;1,75) - координаты центра окружности
Найдём квадрат радиуса окружности:
R²=(8-y₀)²
R²=(8-1,75)²
R²=6,25²
Теперь запишем уравнение окружности:
(х-0)²+(y-1,75)²=6,25²
x²+(y-1,75)²=30,0625
Объяснение:
Можно лучший? Я хочу умного
1) Удалите номера неверных утверждений:
1. Если один из острых углов прямоугольного треугольника равен 73о, то второй острый угол равен 27о. - неверно, 17°
2. Если углы при основании равнобедренного треугольника равны по 60о, то такой треугольник – правильный. - верно, третий угол тоже 60°
3. Существует треугольник со сторонами 3,4,5. - существует, это прямоугольный треугольник, "египетский"
2) Удалите номер верных утверждений:
1. Если два катета одного треугольника соответственно равны двум катетам другого треугольника, то такие треугольники равны. - верно
2. Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180о. - верно
3. Если в треугольнике два угла равны, то он равнобедренный. - верно
3) Сформулируйте теорему о катете прямоугольного треугольника, лежащего против угла в 30 градусов. - Катет, лежащий против угла 30 градусов, равен половине гипотенузы.
4) Острые углы прямоугольного треугольника относятся как 12:18. Найдите эти углы.
Сумма острых углов прямоугольного треугольника составляет 90 градусов. Пусть ∠1=12х°, ∠2=18х°, тогда 12х+18х=90; 30х=90; х=3.
∠1=12*3=36°; ∠2=18*3=54°
ответ: 36°, 54°
AB=AC, следовательно BD=DC. Значит AD - медиана. Теорема доказана по свойству медиан.