М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
gevorpilot
gevorpilot
13.02.2023 15:18 •  Геометрия

3.

Докажите, что MNF = KNF, если МNK —равнобедренный, а NF его высота.


3.Докажите, что MNF = KNF, если МNK —равнобедренный, а NF его высота.​

👇
Ответ:
niki1232018ovv1ej
niki1232018ovv1ej
13.02.2023

ав чтсссосрз,наоапуогцмуг1п6

Объзлщямочаы пт,ла ва яснение:

4,8(46 оценок)
Открыть все ответы
Ответ:
adaman2006
adaman2006
13.02.2023
Периметр-это сумма длин всех  сторон
в параллелограмме противолежащие стороны равны
значит 32-6-6=20 (сумма 2-х противолежащих сторон) вторая сторона =10 см
проведём высоту, один из углов=150 гр,значит второй соседний равен 30 гр, рассмотрим прямоугольный треугольник, гипотенуза(боковая сторона =6) высота-это катет,лежащий против угла в 30 гр,значит, высота равна 1/2 гипотенузы=3
площадь параллелограмма=произведению основания на высоту,проведённую к этому основанию, значит площадь равна 3*10=30 см^2
ответ:30 см^2 
4,6(67 оценок)
Ответ:
Файлетмер
Файлетмер
13.02.2023

Объяснение:

общем случае, геометрическое место точек формулируется параметрическим предикатом, аргументом которого является точка данного линейного Параметры предиката могут носить различный тип. Предикат называется детерминантом геометрического места точек. Параметры предиката называются дифференциалами геометрического места точек (не путать с дифференциалом в анализе).

Роль дифференциалов во введении видовых различий в фигуру. Количество дифференциалов может быть любым; дифференциалов может и вовсе не быть.

Если заданы детерминант {\displaystyle P(M,\;a,\;b,\;c,\;\ldots )}P(M,\;a,\;b,\;c,\;\ldots ), где {\displaystyle M}M — точка, {\displaystyle a,\;b,\;c,\;\ldots }a,\;b,\;c,\;\ldots  — дифференциалы, то искомую фигуру {\displaystyle A}A задают в виде: «{\displaystyle A}A — геометрическое место точек {\displaystyle M}M, таких, что {\displaystyle P(M,\;a,\;b,\;c,\;\ldots )}P(M,\;a,\;b,\;c,\;\ldots )». Далее обычно указывается роль дифференциалов, им даются названия применительно к данной конкретной фигуре. Под собственно фигурой понимают совокупность (множество) точек {\displaystyle M}M, для которых для каждого конкретного набора значений {\displaystyle a,\;b,\;c,\;\ldots }a,\;b,\;c,\;\ldots  высказывание {\displaystyle P(M,\;a,\;b,\;c,\;\ldots )}P(M,\;a,\;b,\;c,\;\ldots ) обращается в тождество. Каждый конкретный набор значений дифференциалов определяет отдельную фигуру, каждую из которых и всех их в совокупности именуют названием фигуры, которая задаётся через ГМТ.

В словесной формулировке предикативное высказывание озвучивают литературно, то есть с привлечением различного рода оборотов и т. д. с целью благозвучия. Иногда, в случае детерминантов, вообще обходятся без буквенных обозначений.

Пример: параболу зададим как множество всех таких точек {\displaystyle M}M, что расстояние от {\displaystyle M}M до точки {\displaystyle F}F равно расстоянию от {\displaystyle M}M до прямой {\displaystyle l}l. Тогда дифференциалы параболы — {\displaystyle F}F и {\displaystyle l}l; детерминант — предикат {\displaystyle P(M,\;F,\;l)=(\rho (M,\;F)=\rho _{l}(M,\;l))}P(M,\;F,\;l)=(\rho (M,\;F)=\rho _{l}(M,\;l)), где {\displaystyle \rho }\rho  — расстояние между двумя точками (метрика), {\displaystyle \rho _{l}}\rho _{l} — расстояние от точки до прямой. И говорят: «Парабола — геометрическое место точек {\displaystyle M}M, равноудалённых от точки {\displaystyle F}F и прямой {\displaystyle l}l. Точку {\displaystyle F}F называют фокусом параболы, а прямую {\displaystyle l}l — директрисой».

4,6(13 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ