Из условия: 1) основание - квадрат 2) проекция стороны на основание -прямоугольный треугольник 3) в разрезе пирамиды по углам и вершине тоже треугольник
решение: треугольник с вершинами 1. вершина пирамиды 2.угол основания 3.нижняя точка высоты (центр основания) прямоугольный - угол 60 градусов, катет 4 см - второй катет 4/ tg60° проекция стороны на основание - прямоугольный треугольник - равнобедренный - катет 4/ tg60, а гипотенуза будет (4/ tg60°) / sin 45° (в прямоугольном равнобедренном треугольнике углы при гипотенузе равны по 45 градусов ) это и будет ответом - (4/ tg60°) / sin 45°
1) Возможно, тут и как-то по-другому нужно доказывать, но так тоже всё верно: , как диагонали равных квадратов, значит Δ - равнобедренный, О - середина АС, значит - медиана, биссектриса и высота, то есть ⊥ ЧТД
2) Можно по достаточному условию перпендикулярности прямой и плоскости: Для перпендикулярности заданных прямой и плоскости достаточно, чтобы прямая была перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости. ⊥ , ⊥ , значит ⊥ , и перпендикулярна любой прямой этой плоскости, в том числе , значит ∠ ЧТД
Можно по теореме о трёх перпендикулярах: Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна её проекции, то она перпендикулярна и самой наклонной. Здесь ещё проще: АВ проведена через основание наклонной , - проекция на плоскость АВС и ⊥, значит ⊥ и ∠ ЧТД
Площадь полной поверхности цилиндра
S = 2πR² + 2πRL
2πR² + 2πRL = 320π
или
R² + RL = 160 (1)
Площадь осевого сечения цилиндра
Sос = 2R·L
2R·L = 192
или
R·L = 96 (2)
Подставим (2) в (1)
R² + 96 = 160
R² = 64
R = 8
Из (2) найдём L
8·L = 96
L = 12
Объём цилиндра
V = πR²·L
V = π·64·12 = 768π
ответ: Объём цилиндра 768π