В треугольнике даны две стороны и угол, противолежащий одной из них.
По теореме синусов найдем угол В:
a : sinA = b : sinB
sinB = b · sinA / a = 7 · sin60° / 10 = 7 · √3/2 / 10 = 7√3/20 ≈ 0,6062
По значению синуса угла невозможно определить, острый это угол или тупой. Но угол В лежит напротив не большей стороны треугольника, следовательно не может быть тупым.
∠B ≈ 37°
∠C = 180° - (∠A + ∠B) ≈ 180° - (60° + 37°) ≈ 180° - 97° ≈ 83°
Сторону с найдем по теореме синусов:
a : sin A = c : sin C
c = a · sinC / sinA
c ≈ 10 · 0,9925 / 0,866 ≈ 11,5
<a≈38.6248328°
<в≈92.8835062235°
<c≈48.4916609765°
Объяснение:
15²=24²+18²-2×24×18×cosa
225=576+324-864×cosa
-675=-864×cosa
cosa≈0,78125
<a≈38.6248328°
24²=15²+18²-2×15×18×cosв
576=225+324-540×соsв
27=-540сosв
cosв=-27/540
cosв=-0,05
<в≈92.8835062235°
<c≈180°-92.8835062235°-38.6248328°≈48.4916609765