1. 10 см.
2. BD=AC=10 см.
Объяснение:
Р ABC=AB+BC+AC;
AB=AD+BD; BC=CL+BL; AC=AK+CK;
P AKD=AK+KD+AD;
P BDL=BD+BL+DL;
Замечаем, что KD=CL и DL=KC;
В Р AKD заменим KD на CL;
В P BDL заменяем DL на KC.
Получаем Р AKD + P BDL=AK+CL+AD + DB+BL+KC=10;
AD+DB=AC; CL+BL=BC; FR+CK=AC.
И в итоге Р ABC=10 см.
***
2. Пусть меньший угол равен х. Тогда больший равен 2х.
Знаем, что угол А=90*.
х+2х=90*;
3х=90*;
х=30* - меньший угол;
Больший угол равен 2х=2*30=60*.
DA/AC=Sin30*;
AC=DA/Sin30*=5/(1/2)=5*2=10 см.
Так как у прямоугольника диагонали равны, то BD=AC=10 см.
Угол, косинус которого имеет отрицательный знак, - тупой. Он – смежный острому углу с таким же косинусом со знаком "+".
cos(180°-α)= -cosα
Построим острый угол с положительным косинусом 5/13. Смежным ему будет тупой угол с данным в условии косинусом -5/13.
Косинус - отношение в прямоугольном треугольнике катета , прилежащего к данному углу, к гипотенузе.
Для этого построения нам надо найти второй катет прямоугольного треугольника, в котором один катет равен 5, гипотенуза - 13.
Пусть нам надо построить треугольник АВС с прямым углом С.
Известны гипотенуза АВ=13, катет АС=5
По т. Пифагора ВС²=АВ²-АС²
ВС=√(169-25)=12
Построение. На луче СМ отложим отрезок АС=5
Из точки А как из центра чертим полуокружность радиусом 13 см.
Из точки С как из центра чертим полуокружность радиусом 12 см.
Точку их пересечения обозначим В.
Соединим А и В. Косинус угла ВАС=АС:АВ=5/13.
Косинус смежного ∠ВАМ= -5/13. Это искомый угол.
Из точки С по общепринятому методу возводим перпендикуляр. На нем откладываем катет СВ=12 см.
Соединяем В и А. В построенном треугольнике косинус угла А равен 5/13. Смежный ему тупой угол ВАМ - искомый, его косинус - 5/13.