а). (59°; 59°; 62) или (56°; 62°; 62°) ;
б). (41°; 41°; 98°) .
а). Один из углов равен 62°.
В равнобедренном треугольнике по крайней мере два равных угла. Сумма всех углов - 180°. Если угол в 62° - "единственный в своем роде", то каждый из двух других равных углов будет равен:
(180° - 62°) : 2 = 118° : 2 = 59°.
Если же существуют два таких угла, то оставшийся угол равен:
180° - 62° * 2 = 180° - 124° = 56° градусов.
Оба исхода имеют место быть.
Углы искомого треугольника: (59°; 59°; 62) или (56°; 62°; 62°).
б). Один из углов равен 98°.
В равнобедренном треугольнике не может быть два угла по 98°, так как 98° * 2 = 196° > 180°.
Если угол в 98° единственен, то каждый из оставшихся углов равен:
(180° - 98°) : 2 = 82° : 2 = 41°.
Углы искомого треугольника: (41°; 41°; 98°).
Задача решена!
Мне не нравится обозначение радиусов, я их буду обозначать r1, r2, r3;
Окружность, вписанная в исходный треугольник (её радиус я обозначу просто r), является вневписанной для каждого из трех отсеченных. Если построить вневписанные окружности к исходному треугольнику, с радиусами ρ1, ρ2, ρ3; то очевидно (в силу подобия отсеченных треугольников исходному) будут выполнены пропорции
ρ1/r = r/r1; и то же самое для двух других.
то есть ρ1 = r^2/r1; ρ2 = r^2/r2; ρ3 = r^2/r3;
Остается подставить это в известные соотношения
1/r = 1/ρ1 + 1/ρ2 + 1/ρ3; то есть r = r1 + r2 + r3;
и
4R = ρ1 + ρ2 + ρ3 - r; где R - радиус описанной окружности.
то есть 4R = r^2*(1/r1 + 1/r2 + 1/r3 - 1/r); r = r1 + r2 + r3;
это все.
Я бы конечно мог привести вывод этих формул, но Вам бы никогда не задали эту задачу, если бы не выводили их на занятиях.
К примеру, площадь S исходного треугольника равна
S = (p - a)*ρ1 = (p - b)*ρ2 = (p - c)*ρ3 = p*r; откуда
1/ρ1 + 1/ρ2 + 1/ρ3 = (p - a)/S + (p - b)/S + ( p - c)/2 = (3p - a - b - c)/S = p/S = 1/r;
Вывод формулы для R намного сложнее технически, но по сути - то же самое.